

Concept of repeated measures

- •We measure the same outcome measure several times on the same person (or thing)
- •This is often done over time
- •Usually the measurements are continuous data
- •Normally, the measurements are on people
- •Often, there is missing data
- •The number of measurements per subject may differ
- •The timing of measurement per subject may differ
- •Measurements within a subject are likely to be **correlated**, and this needs to be taken into account in the analysis

Why do we take repeated measurements on individuals?

• Some research questions requiring repeated measures data:

- How much of the drug gets into the blood and what happens to these levels over time?
- Do the quality of life scores differ before and after an intervention?
- Do haemoglobin levels change over time within a person?
- Is there a difference in the quality of life scores measured over time between smokers and non smokers?
- Compare 2 diets, and we measure body weight every month on each person

Why do we take repeated measurements on individuals?

- Monitor change over time
- Inform about potential causal relationship between an exposure and an outcome
- Study designs in which patients are followed up over time
- Efficient use of a limited number of subjects: more measurements from fewer individuals but you should only take repeated measures if there is a scientific reason for this (don't do it just to get more data!)

• There is less variability within subject than between subjects, which allows statistical inference to be made with fewer subjects

Example - Repeated measures data

- Laboratory experiment in 16 samples (8 per group) to evaluate the effect of a new compound.
- 8 samples randomized to the active exposure and 8 to a control
- Samples assessed weekly for 3 weeks (week 0, week 1, week 2)
- Samples measured for a specific cell mutation on a scale (0 to 100)
- Questions:
 - Is there any evidence of a difference in level between the active exposure and control
 - Do differences in between groups depend on the timing (i.e. do you get larger differences earlier than later?)

Example - Repeated measures data

Wide format

ID	Exposure	Meas mutati	Measurement of cell mutation (0-100 scale)			
		Week 0	Week 1	Week 2		
1	Active	43	34	45		
2	Active	23	33	32		
3	Control	15	19	21		
4	Control	18	18	23		
5	Control	27	24	22		
6	Control	28	18	26		

Long format

ID	Exposure	Week	Measurement of cell mutation (0-100 scale)
1	Active	0	43
1	Active	1	34
1	Active	2	45
2	Active	0	23
2	Active	1	33
2	Active	2	32
3	Control	0	15
3	Control	1	19
3	Control	2	21

Repeated measures analysis

•There are specific statistical methods that account for repeated measures

•These methods are often more complex than the standard statistical tests but:

- •They are the correct way to analyse repeated measures data
- •They account for the fact that the data has a **dependent structure** (eg measurements are organised in terms of subjects)
- •They will analyse all of the actual data you have observed
- •They are more **sensitive** to detecting differences between groups than if we only use one single point
- •They allows us to answer question about the entire profile over time

Two measurements per subject

	Measurem mutation (0	Difference	
U	Before treatment	After treatment	After-Before
1	43	34	-9
2	23	33	10
3	15	19	4
4	18	18	0
5	27	24	-3
6	28	18	-10

If we want to account for paired data and assess whether there is a difference between measurements After and Before treatment consider using:

- Paired t-test
- Wilcoxon signed-ranks test

Week 0 Week 1 Active 43 34 Active 23 33 Control 15 19 Control 15 19 Control 18 18 Control 27 24 Control 28 18 Active 45 34 Active 35 33 Coefficients* Linear regression with treatment as a predict adjusting for week 0 Active 35 33 Coefficients*		Treatment	Measurem mutation (0	nent of cell)-100 scale)		If you want to assess w there is a difference in the measurements between				s whet in the	r r
Active 43 34 2 Active 23 33 3 Control 15 19 4 Control 15 19 4 Control 18 18 5 Control 27 24 6 Control 28 18 7 Active 45 34 8 Active 35 33			Week 0	Week 1		anc	I Contro	ol in	week	1 adju	LS LS
2 Active 23 33 3 Control 15 19 4 Control 18 18 5 Control 27 24 6 Control 28 18 7 Active 45 34 8 Active 35 33	1	Active	43	34		for	week 0	con	sider	using:	
3 Control 15 19 4 Control 18 18 5 Control 27 24 6 Control 28 18 7 Active 45 34 8 Active 35 33	2	Active	23	33							
4 Control 18 18 5 Control 27 24 6 Control 28 18 7 Active 45 34 8 Active 35 33	3	Control	15	19		- L	inear r	eare	ssior	with	
5 Control 27 24 6 Control 28 18 7 Active 45 34 8 Active 35 33 Coefficients* Unstandardized Coefficients Unstandardized Coefficients Standardized Coefficients 0 Stat. Error Beta	4	Control	18	18		+	rootmo	nt ac		odictor	
6 Control 28 18 7 Active 45 34 8 Active 35 33 Coefficients* Unstandardized Coefficients Unstandardized Coefficients Standardized Coefficients	5	Control	27	24		L		111 as	a pi		
7 Active 45 34 8 Active 35 33 Coefficients ^a Unstandardized Coefficients B Std. Error Beta t Sig.	6	Control	28	18		a	ajustin	g for	wee	к 0	
8 Active 35 33 Coefficients ^a Model B Std.Error Beta t Sig. Lower Bot	7	Active	45	34							
Coefficients ^a Unstandardized Coefficients Standardized Coefficients 95.0% Co Model B Std. Error Beta t Sig. Lower Box	8	Active	35	33							
Unstandardized Coefficients Standardized Coefficients 95.0% Co Mondal B Std. Error Beta t Sig. Lower Box							Coefficients ^a				
Model B Std. Error Beta t Sig. Lower Bot					Unstandardize	ed Coefficients	Standardized Coefficients			95.0% Confider	nce
	Lin	oor roaro	naian	Model	В	Std. Error	Beta	t	Sig.	Lower Bound	U

Week 0

treatment

a. Dependent Variable: Week 1

.103

2.109

12.454

.129

.876

.872

5.90

.423

.002

-.174

7.033

.353

17.874

More than 2 measurements per subject

ID	Exposure	Week	Measurement of cell mutation (0-100 scale)
1	Active	0	43
1	Active	1	34
1	Active	2	45
2	Active	0	23
2	Active	1	33
2	Active	2	32
3	Control	0	15
3	Control	1	19
3	Control	2	21

Analysis of repeated measures when the outcome was measured two or more times per subject:

- Repeated Measures ANOVA
- Mixed effects modelling

Repeated Measures ANOVA

ID	Exposure	Measurement of cell mutation (0-100 scale				
		Week 0	Week 1	Week 2		
1	Active	43	34	45		
2	Active	23	Missing	32		
3	Control	15	19	21		
4	Control	18	18	23		
5	Control	27	24	Missing		
6	Control	28	18	26		

- But when there is missing data, 'repeated measures ANOVA' ignores the entire row (i.e. ID's 2 and 5 would not be included in the analysis at all)
- Need to use an alternative method

Random intercept and slope modelling (mixed model)

Fixed component:

-The model will provide us with quantities that are fixed across groups (eg, difference in the treatment means; slope expressing changes in the outcome with time)

Random component:

- The model will consider certain quantities random
- Each subject has its own intercept and slope and these quantities can be seen as randomly scattered around a fixed intercept or fixed slope
- The model will estimate the variability of these quantities that are considered random
- These variability is used to adjust in an efficient way for the fact that the data is organised in terms of repeated measures.

Mixed model results

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	59.359659	2.258106	9.196	26.287	.000	54.268015	64.451302
treat: Active	-6.719317	3.074642	7.701	-2.185	.062	-13.857675	.419040
treat: Control	0 ^b	0					
dav	251339	035614	10 103	7 0 5 7	000	172096	330583

a. Dependent Variable: cellmutation.

b. This parameter is set to zero because it is redundant.

Estimates of Covariance Parameters^a

Parameter		Estimate	Std. Error
Residual		20.861932	4.310717
Intercept [subject = id]	Variance	13.193014	9.556593
day [subject = id]	Variance	.005180	.004607

a. Dependent Variable: cellmutation.

Fixed effects

Random effects

