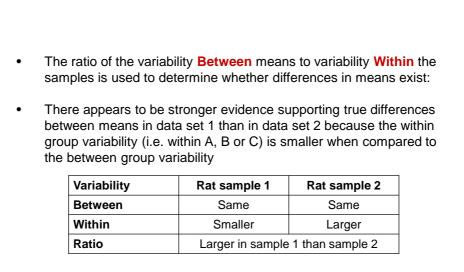
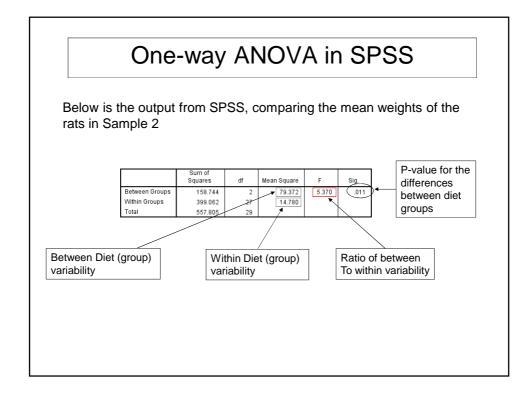
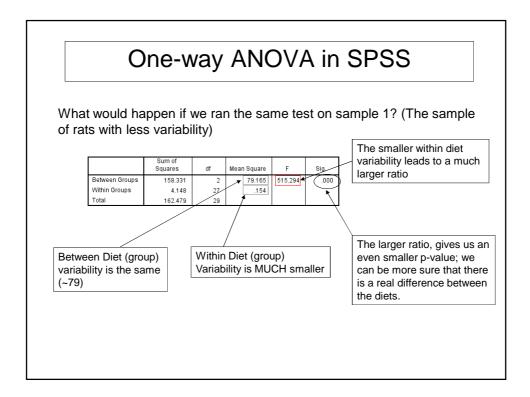


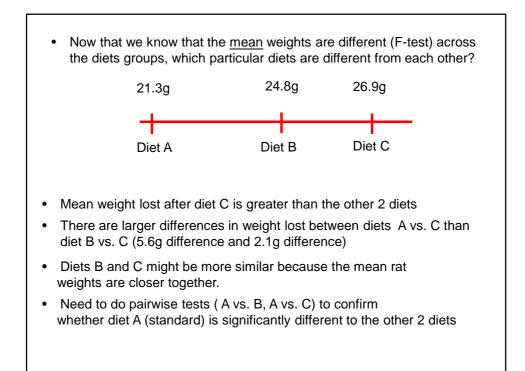
Comparing multiple groups ANOVA – Analysis of variance

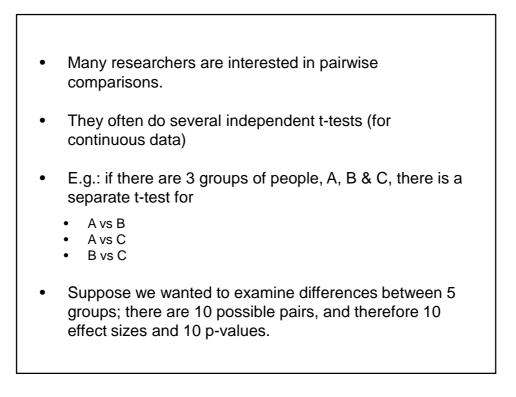

When the outcome measure is based on 'taking measurements on people data'

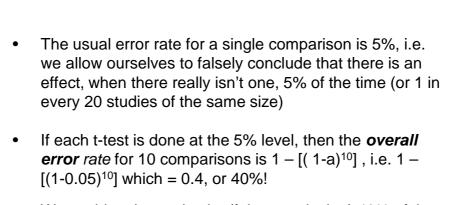
- For 2 groups, compare means using t-tests (if data are Normally distributed), or Mann-Whitney (if data are skewed)
- Here, we want to compare more than 2 groups of data, where the data is continuous ('taking measurements on people')
- For example, comparing blood pressure between 3 dose groups (5mg, 10mg, 20mg) and determine which dose reduces blood pressure the most
- For normally distributed data we can use ANOVA to compare the means of the groups.

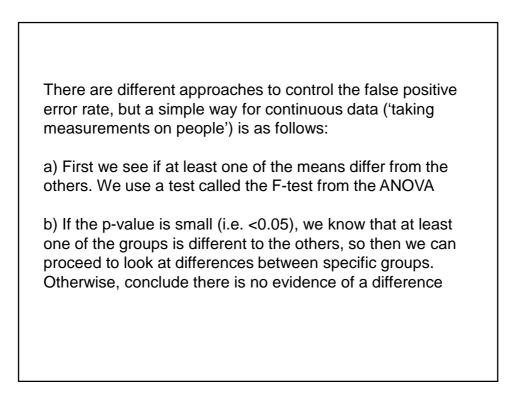

	Ra	t sample	1		Rat	sample 2			
	Diet A	Diet B	Diet C	1	Diet A	Diet B	Diet C		
	21.3	25.3	27.3		23.84	20.66	23.90		
	22.0	24.6	26.7		23.21	24.34	31.10		
	21.1	25.0	26.9		21.73	14.27	24.42		
	21.2	24.6	27.1		18.79	30.69	31.06		
	21.1	25.2	26.7		22.46	22.84	27.63		
	21.5	24.4	26.9		19.96	24.18	23.14		
	21.5	25.0	27.0		17.64	26.88	25.91		
	20.4	25.0	26.6		21.58	25.31	27.10		
	21.3	24.6	27.0		18.83	24.29	30.29		
	21.5	24.2	27.0		25.27	34.26	24.60		
Mean	21.3	24.8	26.9	Mean	21.3 24.8	26.9			
SD	0.4	0.4	0.2	SD	2.5	5.4	3.0		
Both samples we can say va	riatior	n betw	een m	ieans i	n each	i data	• • •	e sam	ne

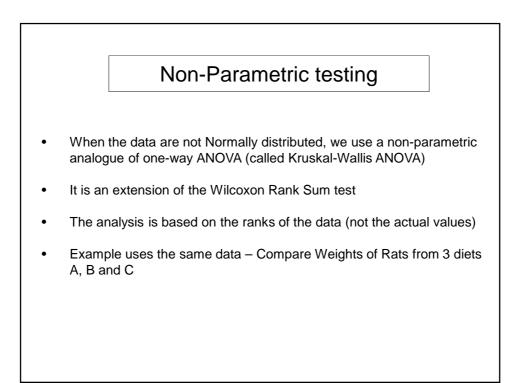


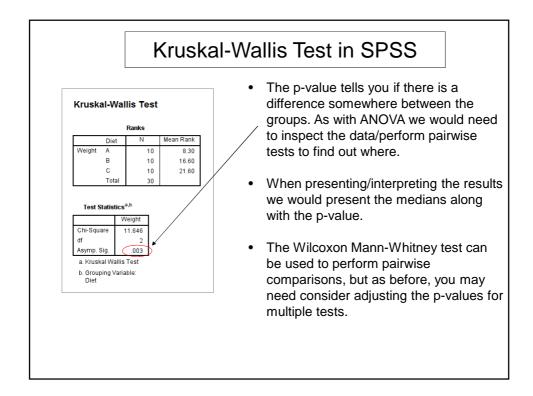

- If the ratio of Between to Within is > 1 then it indicates that there may be differences between the groups .
- Results displayed in an ANOVA table

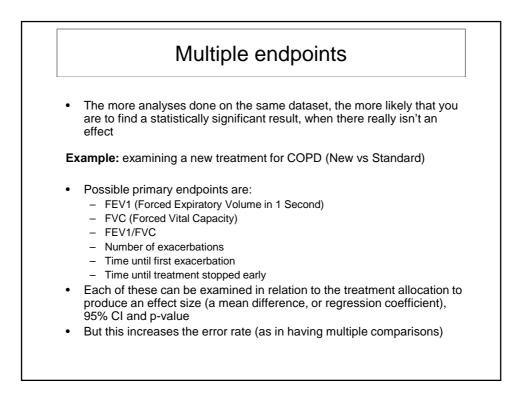

Data entry					
Rat ID number	Diet	Weight(g)			
1	Α	23.84			
2	Α	23.21			
3	В	20.66			
4	В	24.34			
5	С	23.90			
6	С	31.10			
etc.					


Most stats packages will require data to be in the form above (rather than in separate columns for each diet as in the previous slide).



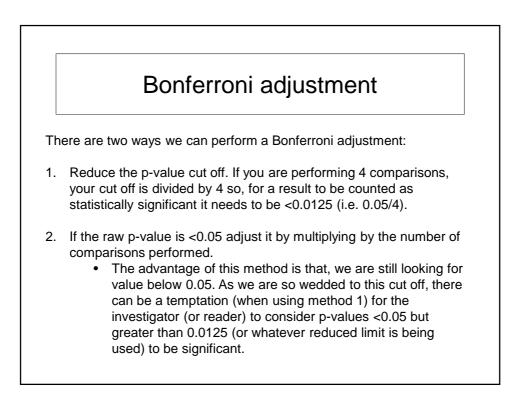

- We could make a mistake (false conclusion) 40% of the time
- Do not perform lots of <u>independent</u> pairwise comparisons

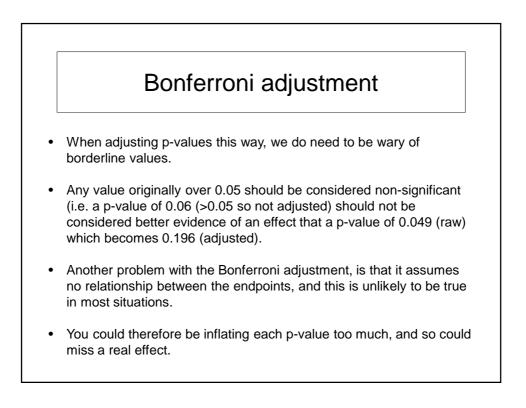



- We are not usually interested in <u>all</u> comparisons
- They are usually pre-planned
- E.g., New Diets B and C, each compared with a standard Diet A (i.e. 2 main comparisons)
- Comparing between B and C might be of less importance

Comparison	Estimate	Raw p-value (95% CI)	Adjusted p- value	
A vs. B	-3.4	0.055 (-7.0 to 0.09)	0.17 (-7.8 to 0.9)	
A vs. C	-5.6	0.003 (-9.1 to -2.1)	0.009 (-10 to -1.2)	

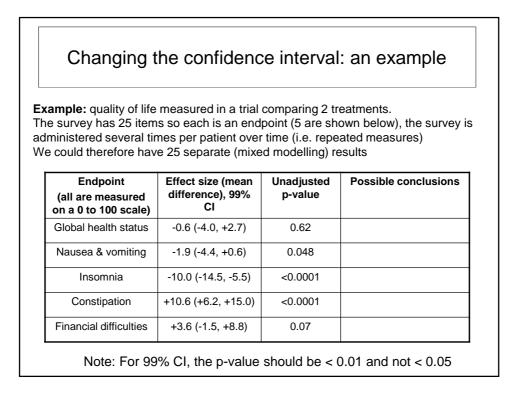
- The ANOVA provides a p-value and 95% CI that <u>allows for having</u> <u>several other comparisons</u>. These are the ones to interpret
- Note the impact on p-values and wider confidence intervals to adjust for having ≥2 comparisons (i.e. a higher false positive rate)





Simple solutions

- · Have 1 or 2 pre-specified endpoints
- These are the ones on which you will make major decisions.
- Adjust p-values using the **Bonferroni adjustment** (there are other, more complex methods to adjust p-values)
- Alternatively, specifically state that the study is a pilot or feasibility (hypothesis generating), and don't adjust the p-values. But make clear that further confirmatory studies are needed.


Bonferroni adjustment					
Endpoint	Raw/unadjusted p-value	Adjusted p-value (simply multiply the raw p-value by 4 if p<0.05, i.e. the number of comparisons)			
FEV1	0.001	0.004			
FVC	0.03	0.12			
No. of exacerbations	0.04	0.16			
Time until first exacerbation	0.67	0.67			

Two possible solutions:

Provide the unadjusted p-values.

Small ones (p<0.001) should be OK, since they should remain small even after allowing for several comparisons
Be cautious about 0.05<p<0.01
Provide 97.5% confidence intervals for the effects sizes if there are, say 2 or 3 endpoints, and 99% Cls for >3 endpoints
These give a conservative range of true effect sizes.
If a 99% Cl still does not include the no effect value, then there is likely to be a real effect
If using 97.5% Cl, then the p-value cut-off to determine statistical significance should then be 0.025 (not 0.05 as is usual)
If using 99% Cl, then the p-value cut-off to determine statistical significance should then be 0.01 (not 0.05 as is usual)

Endpoint (all are measured on a 0 to 100 scale)	Effect size (mean difference), 99% Cl	Unadjusted p-value	Possible conclusions	
Global health status	-0.6 (-4.0, +2.7)	0.62		
Nausea & vomiting	-1.9 (-4.4, +0.6)	0.048		
Insomnia	-10.0 (-14.5, -5.5)	<0.0001		
Constipation	+10.6 (+6.2, +15.0)	<0.0001		
Financial difficulties	+3.6 (-1.5, +8.8)	0.07		

Changing the confidence interval: an example				
Endpoint (all are measured on a 0 to 100 scale)	Effect size (mean difference), 99% Cl	Unadjusted p-value	Possible conclusions	
Global health status	-0.6 (-4.0, +2.7)	0.62	No evidence of an effect	
Nausea & vomiting	-1.9 (-4.4, +0.6)	0.048	Insufficient evidence of an effect, but there migh be	
Insomnia	-10.0 (-14.5, -5.5)	<0.0001	Evidence of an effect	
Constipation	+10.6 (+6.2, +15.0)	<0.0001	Evidence of an effect	
Financial difficulties	+3.6 (-1.5, +8.8)	0.07	No evidence of an effect	