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Examining associations
(Regression)

Outcome is a measure of risk
Endpoints: counting people, and

time to event

Logistic regression –counting people

• To evaluate association between an exposure and an
disease

• Similar principles as linear regression

• Difference:

– outcome has two levels (ie binary, eg: disease and no
disease). With linear regression the outcome is
continuous.

– No Normality assumptions as in linear regression

• ‘Odds ratio’ is the effect size.

• It has some useful mathematical properties that allow
easier modelling (compared to relative risk)
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Odds Ratio (OR)

odds of event in exposed

Odds Ratio (OR) =

odds of event in unexposed

Event= a disease, death, or any well-defined occurrence
(eg admission to hospital)

• In linear regression the y-value (a continuous
measurement) can in theory have any value
(negative and positive) on an infinite scale

• But in logistic regression we have risk; which
can only be between 0 and 1

• The relationship between risk and a factor
therefore looks like the following figure:

Logistic compared to linear
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Risk

1

0

Variable X

• This is not easy to model.

• To overcome this, instead of having the y-axis as risk, it uses a
transformation:

• If p=risk (eg the proportion of people with a disorder)

• Then loge(odds) = loge[p/(1-p)]

• This is then on the same infinite scale as we’d get with a continuous
measurement, and we can fit a line as with linear regression, ie a linear
relationship

• Occasionally, we need to take a transformation of X (eg log) to get
linear relationship

X variable

Log(odds)
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Logistic regression assumptions

• The outcome measure is usually binary (dead/alive,
disease/no disease), but can be extended to measures
that have ≥3 levels

• The x-variables can be categorical or continuous (but not
time-to-event unless everyone has had the event)

• Continuous x-variables do not have to be Normally
distributed (but sometimes may help, ie to get a
better/more reliable model, so a transformation such as
logs can be done)

• The observations must be independent

• The variables should not be linear combinations of each
other (eg 3 factors: height, weight and Z, where
Z=heightx2 + weight)

Examples

• Outcome= admission to hospital (yes or no)

• Three factors (called exposures, covariates,
or x-variables) to be examined separately:

• Age (continuous)

• Sex (binary, ie 2 levels)

• Social class (categorical, ie 4 levels)
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Look at the data first - age

SPSS output for logistic regression of
risk of hospital admission y/n = age

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a
Age .304 .089 11.662 1 .001 1.355 1.138 1.613

Constant -16.143 4.900 10.855 1 .001 .000

a. Variable(s) entered on step 1: Age.

This is the model: loge odds of CV = -16.143 + 0.304xAge
[NB: odds = risk/1-risk]

So, we can predict a risk value for anyone
Eg, if age = 60 years
Log odds = -16.143 + 0.304x60 = 2.097
loge (risk/1-risk) = 2.097, so re-arranging gives risk = 89%
(which seems about right, if you look at the scatter plot above)
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SPSS output for logistic regression of
risk of hospital admission y/n = age

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a
Age .304 .089 11.662 1 .001 1.355 1.138 1.613

Constant -16.143 4.900 10.855 1 .001 .000

a. Variable(s) entered on step 1: Age.

Hosmer and Lemeshow Test

Step Chi-square df Sig.

1 12.836 8 .118

The log odds ratio for age is 0.304.
But we want to work with the anti-log scale
Hence use Exp(B) = 1.355
As age increases by 1 unit (i.e. 1 year) the risk of hospital admission
increases by 35%

The expected true odds ratio could be between 1.14 and 1.61
P-value for this odds ratio = 0.001

This bit of the output provides a test of whether
the model is a good fit to the data (small p-values
<0.05, indicate it might not be)

Converting a continuous x-factor into categorical

• If there isn’t a sufficiently clear linear relationship
using age as a continuous factor, we can examine it
as a categorical factor

• Also, it is sometimes easier to interpret the results
using categories

• But a problem with converting a continuous x-factor
into categorical one, is that we lose information on
variability

• Should always use the factor as continuous first, and
do another logistic regression using the categories
and check that the results are generally similar
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SPSS output for logistic regression of
risk of hospital admission y/n = age, divided into categories

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Step 1a Age_group (<60) 15.701 2 .000

Age_group(60-65) 3.239 .945 11.757 1 .001 25.500 4.004 162.381

Age_group(>65) 2.970 .954 9.693 1 .002 19.500 3.006 126.515

Constant -1.099 .577 3.621 1 .057 .333

a. Variable(s) entered on step 1: Age_group.

So, odds ratio for getting admitted to hospital is:
OR=25.5 among 60-65 compared to <60 years
OR=19.5 among >65 compared to <60 years

We’re looking for a trend, though you may not always see this clearly

One advantage of this, is that you can plot the two ORs and 95% CI
on a diagram (as error bars)

Look at the data first - sex

Hospital admission * Gender Crosstabulation

Count

Gender Total

Female Male

Hospital

admission

No 11 5 16

Yes 14 20 34

Total 25 25 50

So, 56% (14/25) females were admitted to hospital
compared to 80% (20/25) males
We can see that the risk is lower, so the logistic regression
should also show this
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SPSS output for logistic regression of
risk of hospital admission y/n = sex

The log odds ratio for sex is -1.145
But we want to work with the anti-log scale
Hence use Exp(B) = 0.318
The odds of hospital admission is 0.32 times lower in females than in males
(ie the odds has been reduced by 68%)
Make sure you know which level of the factor is made the comparison
(here females vs males, not males vs females)

The expected true odds ratio could be between 0.09 and 1.20 (wide)
The 95% CI includes the no effect value of 1
P-value for this odds ratio = 0.075 (ie not statistically significant)

There may be a difference in the odds of hospital admission between the two
Groups but the evidence not strong here

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a
Gender(1) -1.145 .642 3.180 1 .075 .318 .090 1.120

Constant 1.386 .500 7.687 1 .006 4.000

a. Variable(s) entered on step 1: Gender.

Look at the data first – social class

So the 4 risks are:
10/13 7/12 10/12 7/13
77% 58% 83% 54%
No clear pattern/association

Hospital admission * SE_class Crosstabulation

Count

SE_class Total

Low Lower

middle

Upper

middle

High

Hospital

admission

No 3 5 2 6 16

Yes 10 7 10 7 34

Total 13 12 12 13 50
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SPSS output for logistic regression of
risk of hospital admission y/n = social class

One level of social class has to be the comparison group (here ‘Low’)
So, with 4 levels, there will be 3 odds ratios

The odds of admission among Lower middle is 2.857 times higher compared to Low
The odds of admission among Upper middle is 1.200 times higher compared to Low
The odds of admission among High is 4.28 times higher compared to Low

All of the 95% CIs include the no effect value 1.0

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a

Low 3.311 3 .346

Lower middle 1.050 .862 1.484 1 .223 2.857 .528 15.473

Upper middle .182 .808 .051 1 .821 1.200 .246 5.844

High 1.455 .954 2.329 1 .127 4.286 .661 27.785

Constant .154 .556 .077 1 .782 1.167

a. Variable(s) entered on step 1: SE_class.

SPSS output for logistic regression of
risk of hospital admission y/n = social class

There are 3 p-values, 1 for each of the odds ratios
These are not easy to interpret, because they only relate to that specific level
of the factor.
Also, if some are small and others big, it is difficult to understand what is happening
(eg what if we had p=0.32 (Lower middle), 0.001 (Upper middle), 0.15 (High)
Might not make sense that some levels have an association with risk of hospital
admission risk while other levels do not)

Therefore, what we want is one p-value for the factor ‘social class’
After interpreting that p-value, we might then look at individual ones from the
above table (but they should be for pre-specified comparisons)

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a

Low 3.311 3 .346

Lower middle 1.050 .862 1.484 1 .223 2.857 .528 15.473

Upper middle .182 .808 .051 1 .821 1.200 .246 5.844

High 1.455 .954 2.329 1 .127 4.286 .661 27.785

Constant .154 .556 .077 1 .782 1.167

a. Variable(s) entered on step 1: SE_class.
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SPSS output for logistic regression of
risk of hospital admission y/n = social class

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Step 1a

Low 3.311 3 .346

Lower middle 1.050 .862 1.484 1 .223 2.857 .528 15.473

Upper middle .182 .808 .051 1 .821 1.200 .246 5.844

High 1.455 .954 2.329 1 .127 4.286 .661 27.785

Constant .154 .556 .077 1 .782 1.167

a. Variable(s) entered on step 1: SE_class.

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1

Step 3.583 3 .310

Block 3.583 3 .310

Model 3.583 3 .310

You can get the 1 p-value for social class from this part
of the output:

This indicates no evidence of association between hospital admission and social class

• A method called a ‘likelihood ratio test’ (sometimes
referred to as a ‘change in deviance’ analysis) will
provide a single p-value for judging whether the
factor is significant or not

• A regression model without social class (model A) is
compared with a model with social class (model B).

• The test then judges if model B explains the original
data better than model A.

• If it does, then social class is associated with risk of
hospital admission
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Outcome measure: time-to-event

• Cox regression

• Can examine association between eg time until
death with any type of variable

– Age (‘taking measurements’)

– Social class (‘counting people’)

• Continuous data (eg age) better if Normally
distributed. If not use a suitable transformation to
make it normal

•Cox’s Regression is also called the Proportional Hazards model
(PH)

•It assumes that the ratio of events (the hazard) between 2
individuals or 2 groups is the same over time

• For example, if a treatment reduces the risk of dying by 15% at 6
months, then it should also reduce the risk by the same amount at
2 years (or at any other timepoint during which there is data)

• Having hazards that remain constant over time is very useful
(simplifies things greatly), but may be unrealistic. Sometimes
there are clear differences over time which increase or decrease
the risk of an event

•If the PH assumption is very clearly violated then one approach is
to look at time-dependency, ie. build into the model that the
hazard for a specified variable changes over time

•There are also other methods, such as restricted mean survival
times (but you should seek advice on this)
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Proportional Hazards (PH) Assumption

- PH assumption is violated when the curves clearly cross each other
- Or in example below, where the curves are much more separated later on
- However, the survival model is quite robust to a moderate violation
- Need to examine the curves by eye; alternatively some software does a
statistical test for the assumption
- If assumption clearly does not hold then examine risk difference at a timepoint

You can clearly see that the space
between the 2 curves is very different

The curves clearly cross (crossing at the very
end usually doesn’t matter much)

Examples

• Outcome= time until death

• Three factors (called exposures,
covariates, or x-variables) to be
examined separately:

• Age (continuous)

• Sex (binary, ie 2 levels)

• Social class (categorical, ie 4 levels)
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Look at the data first - age

Impossible to show Kaplan-Meier curve with age as a continuous factor.
Therefore, turn into say 2 or 3 categories to have a look

SPSS output for Cox regression of
time until death = age

The log hazard ratio for age is 0.161.
But we want to work with the anti-log scale
Hence use Exp(B) = 1.175
As age increases by 1 unit (ie 1 year) the chance of dying increases by 17%

The expected true hazard ratio could be between 1.098 and 1.258
P-value for this hazard ratio is <0.0001 (under ‘Sig.’)

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

Age .161 .035 21.562 1 .000 1.175 1.098 1.258
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Look at the data first - sex

Curves are clearly separated, and % alive is greater for females (ie their chance of dying is lower)
So the Cox model should also reflect this

SPSS output for Cox regression of
time until death = sex

The log hazard ratio for sex is -0.761
But we want to work with the anti-log scale
Hence use Exp(B) = 0.467
The risk of death is 0.467 (round to 0.47) times lower in females than in males
(ie the risk has been reduced by 53%)
Make sure you know which level of the factor is made the comparison
(here females vs males, not males vs females)

The expected true hazard ratio could be between 0.24 and 0.91 (wide)
The 95% CI excludes the no effect value of 1
P-value for this odds ratio = 0.026 (ie statistically significant)

There is a difference in the chance of dying between the two groups

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

Gender(Female) -.761 .341 4.972 1 .026 .467 .240 .912



15

Look at the data first – social class

Curves are generally separated, and with approximate trend

SPSS output for Cox regression of
time until death = social class

One level of social class has to be the comparison group (here ‘Low’)
So, with 4 levels, there will be 3 hazards ratios

The risk of death among Lower middle is 0.98 times lower compared to Low
The risk of death among Upper middle is 0.585 times lower (42%) compared to Low
The risk of death among High is 0.391 times lower (61%) compared to Low
Looks like nice trend; higher social class, decreased risk of dying

But two 95% CIs include the no effect value 1.0, whilst one is statistically
significant (High).

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

SE_class (Low) 5.167 3 .160

SE_class (Lower middle) -.019 .437 .002 1 .965 .981 .416 2.311

SE_class (Upper middle) -.536 .437 1.501 1 .221 .585 .248 1.379

SE_class (High) -.940 .472 3.969 1 .046 .391 .155 .985
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SPSS output for Cox regression of
time to death = social class

There are 3 p-values, 1 for each of the hazard ratios
These are not easy to interpret, because they only relate to that specific level
of the factor.
Same issue as with logistic regression

Therefore, what we want is one p-value for the factor ‘social class’
And ignore the ones in the table above, for the time being

Variables in the Equation

B SE Wald df Sig. Exp(B) 95.0% CI for Exp(B)

Lower Upper

SE_class(Low) 5.167 3 .160

SE_class(Lower middle) -.019 .437 .002 1 .965 .981 .416 2.311

SE_class(Upper middle) -.536 .437 1.501 1 .221 .585 .248 1.379

SE_class(High) -.940 .472 3.969 1 .046 .391 .155 .985

• There is a p-value for each level of social class, and it
can be difficult to interpret if some are small (eg p<0.01)
and others are large (eg p>0.10)

• Large p-values could be due to having only a few events
in a specific group

• We need to only examine one p-value for the factor
social class

• As we did with logistic regression, a likelihood ratio test
could be done (for a categorical variable with ≥3 levels), 
for Cox regression
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SPSS output for Cox regression of
time until death = social class

You can get the 1 p-value for social class from this part
of the output:

This p-value of 0.138 indicates insufficient evidence of a clear association between
risk of dying and social class

But the hazards ratios showed a trend, which seemed clinically important.
The p-value being >0.05 is probably due to the study not being big enough

Omnibus Tests of Model Coefficientsa

-2 Log

Likelihood

Overall (score) Change From Previous Step Change From Previous Block

Chi-

square

df Sig. Chi-

square

df Sig. Chi-

square

df Sig.

246.603 5.451 3 .142 5.508 3 .138 5.508 3 .138

a. Beginning Block Number 1. Method = Enter

• Note that the 3 factors examined were the same in
logistic and Cox

• The difference was that logistic used a binary event
outcome (hospital admission or not), while Cox used
time until event (how long it took the event to occur)

• But both regressions can be interpreted in a similar way

• The effect sizes (odds ratio or hazard ratio) often have
a similar interpretation

• Also, the same considerations apply when converting a
continuous factor into a categorical one

• And the issue of interpreting 1 p-value when a
categorical factor has ≥3 levels (and try to avoid 
interpreting the p-value for each level of the factor)


