Examining associations (Regression)

Outcome is a measure of risk Endpoints: counting people, and time to event

Logistic regression -counting people

- To evaluate association between an exposure and an disease
- Similar principles as linear regression
- Difference:
 - outcome has two levels (ie binary, eg: disease and no disease). With linear regression the outcome is continuous.
 - No Normality assumptions as in linear regression
- 'Odds ratio' is the effect size.
- It has some useful mathematical properties that allow easier modelling (compared to relative risk)

Logistic regression assumptions

- The outcome measure is usually binary (dead/alive, disease/no disease), but can be extended to measures that have ≥3 levels
- The x-variables can be categorical or continuous (but not time-to-event unless everyone has had the event)
- Continuous x-variables do not have to be Normally distributed (but sometimes may help, ie to get a better/more reliable model, so a transformation such as logs can be done)
- The observations must be independent
- The variables should not be linear combinations of each other (eg 3 factors: height, weight and Z, where Z=heightx2 + weight)

	ri:	sk of	hos	pital	a	dmis	sion '	y/n =	age	
				•					0	
			Vari	ables in	the Eo	quation				
		В	S.E.	Wald	df	Sig.	Exp(B)	95% C.	I.for EXP(B)	
								Lower	Upper	
Chan 12	Age	.304	.089	11.662	1	1.001 🎽	1.355	1.138	1.613	
Step 14	Constant	-16.143	4.900	10.855	1	.001	.000			
a. Variable	e(s) entered	on step 1	1: Age.		_/					
Hence As ag increa The e P-valu	e use Ex e increa ises by 3 xpected ie for thi	p(B) = ses by 35% true o s odds	= 1.36 / 1 un odds ratio	5 it (i.e. atio co o = 0.0	1 y oulc)01	ear) tl I be b	he risk etweer	of hos n 1.14 a	pital adm and 1.61	ission
Hosmer a	nd Lemesho	w Test	ia	Th	nis b	it of the	e output	t provid	es a test o	f whether

	Variat	les in the	- Faustic	n					
	vana	763 11 11				[95% C I fo	or EXP(B)
		в	S.E.	Wald	df	Siq.	Exp(B)	Lower	Upper
Step 1ª	Age_group (<60)			15.701	2	.000	. ()	-	
	Age_group(60-65)	3.239	.945	11.757	1	.001	25.500	4.004	162.381
	Age_group(>65)	2.970	.954	9.693	1	.002	19.500	3.006	126.515
	Constant	-1.099	.577	3.621	1	.057	.333		
Variable(s) ente	red on step 1: Age_group.	ng adr	nitted	to hos	spital	l is:			
a. Variable(s) ente So, oc OR=2 OR=1	red on step 1: Age_group. Ids ratio for gettin 5.5 among 60-65 9.5 among >65 c	ng adr 5 comj compa	mitted pared ared to	to hos to <60 v <60 y	spital) yea /ears	l is: urs			
a. Variable(s) ente So, oc OR=2 OR=1 We're	red on step 1: Age_group. Ids ratio for gettin 5.5 among 60-65 9.5 among >65 c looking for a tree	ng adr 5 comp compa nd, the	mitted pared ared to ough y	to hos to <60 <60 y vou ma	spital) yea vears ay no	l is: ars ot alwa	iys see	this cle	early

	Varia	ables ir	the Eq	uation						
		В	S.E.	Wald	df	Sig.	Exp(B)	95% C	.I.for EXP(B)	
								Lower	Upper	
	Low			3.311	3	.346				
	Lower middle	1.050	.862	1.484	1	.223	2.857	.528	15.473	
Step 1 ^a	Upper middle	.182	.808	.051	1	.821	1.200	.246	5.844	
	High	1.455	.954	2.329	1	.127	4.286	.661	27.785	
	Constant	.154	.556	.077	1	.782	1.167			
e level o	f social clas evels, there	s ha will	s to b be 3 (e the	e cor ratio	mpari: os	son gr	roup (h	ere 'Low')	

	Vall	ables in	the Eq	uation	df	Sig	Evp(B)	05% C	I for EVP(B)	
			J.L.	waiu	u	Sig.	Lvb(D)	Lower	Upper	
	Low			3.311	3	346				
	Lower middle	1.050	.862	1.484	1	.223	2.857	.528	15.473	
Step 1 ^a	Upper middle	.182	.808	.051	1	.821	1.200	.246	5.844	
	High	1.455	.954	2.329	1	.127	4.286	.661	27.785	
	Constant	.154	.556	.077	1	.782	1.167			
		<u> </u>	_0.000.							
ere are ese are	3 p-values, not easy to	1 for inter	each pret,	n of tl beca	ne oo ause	dds ra they <u>i</u>	atios only re	elate to	that speci	fic leve

After interpreting that p-value, we might then look at individual ones from the above table (but they should be for pre-specified comparisons)

	Va	riables in	the Eq	uation						
		В	S.E.	Wald	df	Sig.	Exp(B)	95% C	.I.for EXP(B)	
								Lower	Upper	
	Low			3.311	3	.346				
a	Lower middle	e 1.050	.862	1.484	1	.223	2.857	.528	15.473	
Step 1ª	Upper middle	e .182	.808	.051	1	.821	1.200	.246	5.844	
	IHIAN	1.455	.954	2.329	1	.127	4.286	.661	27.785	
	Constant	454	EEC	077	41	70/1	4 4 6 7			
a. Variable(You	Constant s) entered on st can get	154 ep 1: SE the	.556 _class. 1 p-	valu	le f	.782	ocial	class	s from th	nis par
A. Variable(You of th	Constant s) entered on st can get e outpu	<u>154</u> ep 1: SE the t:	.556 _class. 1 p-	valu	ıe f	.782	Dcial	class	s from th	nis par
A. Variable(You of th	constant s) entered on st can get e output	<u>154</u> ep 1: SE the t:	.556 _class. 1 p-	.077 valu	I IE f	Or So	DCial	class	s from th	iis par
a. Variable(You of th	Constant S) entered on st can get e outpu	<u>154</u> ep 1: SE the t:	.556 _class. 1 p- Dmnibu	valu s Tests	I IE f	Or So	DCial	class	s from th	nis par
A. Variable(You of th	constant s) entered on st can get e outpu	1.154 ep 1: SE the t: Step	.556 _class. 1 p-	s Tests	I Ie f of Moo	.782 Or So del Coeff are 3.583	1.167	class sig	s from th	nis par
A. Variable(You of th	constant s) entered on st can get e output	the step Block	.556 _class. 1 p-	s Tests	I JE f	.782 OF SC del Coeff are 3.583 3.583	1.167		s from th	nis par

- A method called a 'likelihood ratio test' (sometimes referred to as a 'change in deviance' analysis) will provide a single p-value for judging whether the factor is significant or not
- A regression model without social class (model A) is compared with a model with social class (model B).
- The test then judges if model B explains the original data better than model A.
- If it does, then social class is associated with risk of hospital admission

- Cox regression
- Can examine association between eg time until death with any type of variable
 - Age ('taking measurements')
 - Social class ('counting people')
- Continuous data (eg age) better if Normally distributed. If not use a suitable transformation to make it normal

•Cox's Regression is also called the Proportional Hazards model (PH) It assumes that the ratio of events (the hazard) between 2 individuals or 2 groups is the same over time • For example, if a treatment reduces the risk of dying by 15% at 6 months, then it should also reduce the risk by the same amount at 2 years (or at any other timepoint during which there is data) · Having hazards that remain constant over time is very useful (simplifies things greatly), but may be unrealistic. Sometimes there are clear differences over time which increase or decrease the risk of an event .If the PH assumption is very clearly violated then one approach is to look at time-dependency, ie. build into the model that the hazard for a specified variable changes over time •There are also other methods, such as restricted mean survival times (but you should seek advice on this)

SPSS output for Cox regression of time until death = social class

		Va	riables in t	he Ec	uation			
	В	SE	Wald	df	Sig.	Exp(B)	95.0% CI	for Exp(B)
							Lower	Upper
SE_class (Low)			5.167	3	.160			
SE_class (Lower middle)	019	.437	.002	1	.965	.981	.416	2.311
SE_class (Upper middle)	536	.437	1.501	1	.221	.585	.248	1.379
SE_class (High)	940	.472	3.969	1	.046	.391	.155	.985

One level of social class has to be the comparison group (here 'Low') So, with 4 levels, there will be 3 hazards ratios

The risk of death among Lower middle is 0.98 times lower compared to Low The risk of death among Upper middle is 0.585 times lower (42%) compared to Low The risk of death among High is 0.391 times lower (61%) compared to Low Looks like nice trend; higher social class, decreased risk of dying

But two 95% CIs include the no effect value 1.0, whilst one is statistically significant (High).

		Var	iables in t	he Ec	uation			
	В	SE	Wald	df	Sig.	Exp(B)	95.0% CI f	or Exp(B)
							Lower	Upper
SE_class(Low)			5.167	3	.160			
SE_class(Lower middle)	019	.437	.002	1	.965	.981	.416	2.311
SE_class(Upper middle)	536	.437	1.501	1	.221	.585	.248	1.379
SE_class(High)	940	.472	3.969	1	.046	.391	.155	.985
ho footor		•			-			-
me issue as with	logistic	c regr	ession					

