

Cohort Studies

"Study outcomes by exposure"

Process:

- Identify a suitable group of subjects at risk
- Follow them over time
- Compare health outcome of interest in:
 - Subjects exposed to/have risk factor
 - $\circ~$ Subjects not exposed to/do not have risk factor
- No direct intervention by investigator
- These can be carried out prospectively or retrospectively

Case-Control Studies

"Study exposures by outcome"

Process:

- Identify a suitable group of subjects with outcome of interest ('cases')
- Select 'controls' who do not have the outcome of interest from the population who were at risk
- Compare past exposures to risk factor(s) in both cases and controls
- No direct intervention by investigator
- These are carried out retrospectively

Observational Studies: Strengths & Limitations

Strengths:

- Experimental design may not be ethical
- Can be relatively cheap/quick to carry out
- Methods and results are simple to interpret
- Collect detailed information on the risk exposures and health outcomes of interest and target research (e.g. rare exposures/outcomes)
- Information can also be collected for controls

Limitations:

- Results may not be generalizable
- Causation or association?
- · Extraneous factors cannot be manipulated by the investigators
 - (i.e. prone to confounding and bias)

	Non-sn	nokers	Smol	cers	
	No. deaths/no. of men	Death rate per 1000 (A)	No. deaths/no. of men	Death rate per 1000 (B)	Relative risk (B÷A)
All	9/1000	9	15/1000	15	1.70

Confou	Confounding - example								
	Non-smokers			Smokers					
	No. deaths/no. of men	Death rate per 1000 (A)		No. deaths/no. of men	Death rate per 1000 (B)		Relative risk (B÷A)		
All	9/1000	9		15/1000	15		1.70		
Non-drinkers	2/660	3		1/340	3		1		
Drinkers	7/340	21		14/660	21		1		

• To allow for drinking alcohol, we simply divide the data into 2 groups, and then we look again at the association between smoking and death rate

Conclusion: no association

Γ

There are more sophisticated methods to do this, that can also allow for several confounders at the same time (multivariable methods)

Confounding cannot be removed from a research study, but can be allowed for in the study design and statistical analysis (though may complicate the results)

will be difficult to allow for in the analysis because it often cannot be measured

Experimental Research

- Experimental studies involve the investigator intervening in some way to affect the outcome
- These can be laboratory experiments, animal studies or clinical trials
- Experimental research provides data from which firmer conclusions can be made compared to observational studies
- Study design is very important:
 - o Must consider all possible confounders and remove any potential biases
 - Suitability? (cost, size, time to complete)
- Key concepts
 - o Randomisation
 - o Blinding
 - Placebo-effect
 - Repeatability

Trial in 1959 of 17 angi	na patients:				
8 patients randomised to receive artery ligation					
9 patients randomised to receive skin incision on chest					
Average	subjective improvement				
Ligation arm:	32%				
Not ligated arm:	43%				
2 nationts domonstrated	significant improvement in andurance				

This, and another similar trial, stopped this practice (and saved much morbidity and mortality associated with the operation)

- The size of a study (whether it be on people or a laboratory experiment) is crucial to study design
- A good study design should be able to answer the research question with the minimum number of subjects possible
- If the study is too small:
 - you may miss important differences (because of chance variation)
 - 95% confidence intervals could be wide
 - difficult to make robust conclusions
 - you may see spurious associations
- If too large, you waste resources because you could have found a clear answer sooner

Consider study comparing exposure A with B, and the endpoint is the 1-year death rate

	Number observ	of deaths ved (%)			
No. of patients per arm	Exposure A	Exposure B	Difference	Comment	
100	15 (15%)	20 (20%)	5 fewer deaths	Difficult to distinguish a real effect from chance	
100	5 (5%)	40 (40%)	35 fewer deaths	A difference this big is unlikely to all be due to chance	
1000	150(15%)	200 (20%)	50 fewer deaths	A difference this big is unlikely to all be due to chance	

What is an effect?

An "effect size" is used when we are making <u>quantitative</u> comparisons

Comparison	Effect size
Comparing two or more groups:	
Taking measurements on people/objects	Difference between 2 means or medians
Counting people/objects	Relative risk, risk difference
Time-to-event	Hazard ratio, difference in median survival
Comparing two measurements on the same person/object (e.g. regression)	Regression coefficient, correlation coefficient

ashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, et al. (2014) CXCL10 Is Critical for the laintenance of Depigmentation in a Mouse Model of Vitiligo. Sci Transl Med 6: 223ra223	e Progression and
Study design The overall study design was based on controlled laboratory experimentation using <i>ex vivo</i> human tissue samples and a mouse model for <i>in vivo</i> mechanistic studies. The research objectives at the outset of the study were to test the hypothesis that IFNγ-inducible chemokines were responsible for the recruitment of autoreactive T cells to the skin. This hypothesis was formed on the basis of previously reported observations in our mouse model (26). Sample size was determined using the approach described by Dell, <i>et al.</i> (60). Briefly, each experiment was powered to detect a difference between group means of twice the observed standard deviation, with a power of 0.8 and a significance level of 0.05. Replicate hakur H, Roberts I, Bautista R, et al. CRASH-2 trial collaborators. Effects of tranexamic acid on	N=10
cclusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASI lacebo-controlled trial. Lancet. 2010;3;376:23–32. Statistical analyses The statistical analysis plan was sent to all ethics committees and regulatory agencies before unblinding. Because the risk of death might be around 20%, and even a 2% survival difference (corresponding to an RR of death with tranexamic acid of 0-9) would be important, a trial of 20000 patients was planned, which would then have an 85% chance of achieving a two-sided p value of less than 0-01 and a 95% chance of a two-sided p value of less	N=20 000

%	patients	alive		Powe	r
ontrol	New	Difference	80%	85%	90%
0	60	10	776	886	1038
0	70	20	186	214	248
50	80	30	78	88	104
50	90	40	40	44	52
A study of (at 80% p	78 patie ower)	expected differenc	e o detect a	differer	nce of 3

Sample size Outcome: taking measurements on people/objects

			Standardized	Mean value Treatment B	Mean value Treatment A
			difference (Δ) =	Standard deviation	
		Power			
Δ	80%	85%	90%		
0.1	3142	3594	4206		
0.2	788	900	1054		
0.3	352	402	470		
0.4	200	228	266		
0.5	128	146	172		
1.0	34	38	46		

• When the outcome measure of the study involves taking measurements on people (or objects) we calculate:

Sample size Outcome: taking measurements on people/objects

Outcome measure	Units of measure	Mean in Group A	Mean in Group B	Standard deviation	Standardized difference
Blood pressure	mmHg	90	85	6	0.8
Cholesterol	mmol/L	6	4.7	1.6	0.8

We have two different measurements (blood pressure and cholesterol) but the standardized difference between Group A and Group B is the same

The sample size would be the same

Sample size Outcome: Time-to-event data

There are several different methods, depending on how you want to describe the effect size (power and significance level the same as before):

- Can specify the survival (event) rate in each group
- Can specify the median survival in each group, with length of recruitment time and length of follow up time
- Can specify one event rate (or median survival) and the hazard ratio

Study design and sample size further information

- Case-control and cohort studies:
- http://www.cdc.gov/EpiInfo/
- http://www.sph.emory.edu/~cdckms/sample%20size%202%20grps%20 case%20control.html
- All studies
- Dupont WD and Plummer WD: PS power and sample size program available for free on the Internet. Controlled Clin Trials,1997;18:274. http://ps-power-and-sample-size-calculation.software.informer.com/
- Sample size tables for clinical studies. Machin et al. Wiley Blackwell 2009 (includes software on CD)

