







## **Ordinal logistic regression**

• The model is similar to binary logistic regression, but the probabilities represent categories of a response:

$$\log\left[\frac{p_{j}}{1-p_{j}}\right] = a_{j} + bX_{1} + cX_{2} + dX_{3} + \dots$$

- The thresholds (*a<sup>j</sup>*s) correspond to the intercept in simpler models, these depend only on which category's probability is being predicted
- The prediction part of the model depends only on the factors and is independent of the outcome category







## Interpreting a continuous covariate (eg. score)

| Parameter Estimates |                |          |            |        |    |      |                         |             |  |  |
|---------------------|----------------|----------|------------|--------|----|------|-------------------------|-------------|--|--|
|                     |                |          |            |        |    |      | 95% Confidence Interval |             |  |  |
|                     |                | Estimate | Std. Error | Wald   | df | Siq. | Lower Bound             | Upper Bound |  |  |
| Threshold           | [severity = 0] | 4.404    | 1.089      | 16.345 | 1  | .000 | 2.269                   | 6.539       |  |  |
|                     | [severity = 1] | 8.105    | 1.301      | 38.819 | 1  | .000 | 5.555                   | 10.655      |  |  |
| Location            | score          | .928     | .350       | 7.040  | 1  | .008 | .242                    | 1.613       |  |  |

- 'Threshold' is analogous to the intercept terms for linear, logistic and Cox regression models
- The estimate is the odds ratio for the outcome on the natural log-scale, the odds ratio for 'score' is exp(0.928) = 2.53
- For a one unit increase in questionnaire score, the odds of being in a higher severity group increases by 2.53 times. That is:
  - $\circ~$  The odds of being either moderate or severe compared to mild are 2.53 times greater
  - The odds of being severe compared to either mild or moderate are 2.53 times greater

|           |                |           | Par       | ameter Estir | nates    |      | 85% Confid   | anco Intorval |
|-----------|----------------|-----------|-----------|--------------|----------|------|--------------|---------------|
|           |                | Estimate  | Std Error | VA(a)d       | df       | Sig  | 1 ower Bound | Linner Bound  |
| Threshold | [severity = 0] | 2.176     | .773      | 7.935        | 1        | .005 | .662         | 3.690         |
|           | [severity = 1] | 4.272     | .798      | 28.683       | 1        | .000 | 2.708        | 5.835         |
| Location  | [history = 1]  | 1.046     | .268      | 15.200       | 1        | .000 | .520         | 1.571         |
|           | [history = 0]  | 0ª        |           |              | 0        |      |              |               |
| The c     | odds ratio     | for 'hist | ory' is e | xp(1.04      | 6) = 2.8 | 85   |              |               |

















| Parameter Estimates   |           |                        |                           |                                      |                   |                |             |  |  |
|-----------------------|-----------|------------------------|---------------------------|--------------------------------------|-------------------|----------------|-------------|--|--|
|                       |           |                        | 95% Wald Conf             | idence Interval                      | Hypot             |                |             |  |  |
| Devenetr              |           | Otd Error              | Lower                     | Unnor                                | Wald Chi-         | df             | Cia         |  |  |
| arameter<br>ntercent) | 2749      | 0020                   | 2.569                     | 2 930                                | equare<br>992.265 | <u>uí</u><br>1 | 51Q.<br>000 |  |  |
| intercept)            | - 417     | 0502                   | 2.509                     | 2.930                                | 69122             | 1              | .000        |  |  |
| jenuer-oj             | 417<br>na | .0302                  | 510                       | 515                                  | 05.152            | '              | .000        |  |  |
| yenuer- 1j            | 017       | . 0017                 | . 012                     |                                      | . 03.366          | . 4            |             |  |  |
| oont in               | hoenit    | al aivo                | n condor a                | and age                              |                   |                | ,           |  |  |
| spent in              | hospit    | al, giver              | n gender a                | and age                              |                   |                | <b>,</b>    |  |  |
| spent in<br>Model:    | hospit    | al, giver              | n gender a                | and age                              | er) + (0.01       | 7 x Ag         | e)          |  |  |
| Model:                | log(Day   | al, giver<br>/s) = 2.7 | 749 – (0.4<br>es and Gend | 17 x Gend                            | er) + (0.01       | 7 x Ag         | e)          |  |  |
| Model:                | log(Day   | al, giver<br>/s) = 2.7 | 749 – (0.4<br>es and Gend | and age<br>17 x Gend<br>er=1 for mak | ler) + (0.01      | 7 x Ag         | e)          |  |  |

|             |       |            |                     |       |      |        | <b></b>        | JCI            |
|-------------|-------|------------|---------------------|-------|------|--------|----------------|----------------|
|             |       |            | Parameter Esti      | mates |      |        | 95% Wald Confi | ience Interval |
|             |       |            | Hypothesis Test     |       |      |        | for Exp(B)     |                |
| Parameter   | в     | Std. Error | Wald Chi-<br>Square | df    | Siq. | Exp(B) | Lower          | Upper          |
| (Intercept) | 2.749 | .0920      | 893.265             | 1     | .000 | 15.632 | 13.053         | 18.72          |
| age         | .017  | .0017      | 93.366              | 1     | .000 | 1.017  | 1.013          | 1.020          |
| [gender=0]  | 417   | .0502      | 69.132              | 1     | .000 | .659   | .597           | .723           |
| Idender=11  | 0     |            |                     | 1.    |      | 1      |                |                |

- The relative rate for gender is 0.66, with 95% CI 0.60 to 0.73
- The number of days spent in hospital is lower for women than men (after allowing for age); i.e. the rate is 34% lower for women (95% CI: 27 to 40%). [Gender=0 for females and 1 for males]
- The number of hospital days increases as age increases (after allowing for gender). As age increases by one year the rate increases by 2%





## **UCL**

## Key points

- We can analyse count data by fitting Poisson regression models to the individual frequency of events
- The natural logarithm of the response variable is linked to the covariates
- Different lengths of exposure time can be accounted for in the model
- Also, variables that change over time can be incorporated by dividing up the follow-up time of each individual (eg. 5 years smoking status for each individual gives 5 rows of data)