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Introduction

e Have seen outcome measures based on:
o Taking measurements on people (continuous data); linear regression
o Counting people (yes/no); logistic regression
o Time-to-event data; Cox regression

e There are other types of regression:

o Counting the number of events that have occurred (i.e. per person or
object)

eg. number of days spent in hospital (if very skewed)

o The outcome has 23 categories that have a natural order to them (called
ordered categories)

eg. disease severity (mild, moderate, severe); agreement (strongly agree,
agree, neutral, disagree, strongly disagree)




Ordered categorical data

For ordered categories the researcher often chooses to divide the
variable into two groups and apply binary logistic regression

Although not incorrect, this method does not utilise all of the available
information within the outcome data

Ordinal logistic regression is an extension of binary logistic regression
which is appropriate for ordered categorical outcome variables

The model is based on the notion that there is some underlying
quantitative scale

Logistic regression (reminder)

In the binary case, we look at the probability p of a given response.
This can only lie between 0 and 1 so we use the logit of p instead,
i.e. log(p/1-p), when deriving the regression (because this then looks
similar to linear regression):

logit(p) = log(p/1-p) = a+ bX; + cX, + dX; +....

b can be interpreted as increasing/decreasing the log-odds of an event,
and exp(b) is used as the odds ratio for a unit increase/decrease in
factor b

For ordered categories we can look at the probability p; of having a
response less than or equal to a given group, or a higher response

(i.e.1-p)




Ordinal logistic regression

e The model is similar to binary logistic regression, but the probabilities
represent categories of a response:

Iog{ll} =a; +bX, +cX, +dX; +....

i

e The thresholds (a's) correspond to the intercept in simpler models,
these depend only on which category’s probability is being predicted

e The prediction part of the model depends only on the factors and is
independent of the outcome category

Choosing regression covariates

The process of choosing variables for the model is similar to the
process of selecting them in other types of regression models

o Both theoretical and empirical considerations should be taken into
account when selecting variables to be included

¢ Individual continuous or binary variables can be assessed through
the use of Wald tests

e Likelihoods can be used to compare nested models for categorical
variables with =3 levels




Example of ordinal data

e Collect data on the severity of 400 patients with depression

250

Freguency FPercent

mild =0} 220 846.0

200 moderate (=13 140 3580
severe (=2) 40 100

Total 400 1000

150

Frequency

100

moclerate severe

disease severity

We can describe the
data using contingency
tables and bar charts

depression (binary — yes/no) and their score from a baseline

questionnaire (continuous scale)

i.e. disease severity is the outcome variable (coded ‘0’/'1°/'2’ for the

three levels), medical history and questionnaire score are factors

e logit(p) = &+ (b x Score)
e logit(p) = &+ (b x History)

Information is also collected on whether each patient has a history of

We aim to be able to see the relationship between the clinical severity
of depression, medical history and the questionnaire score




Interpreting a continuous covariate (eg. score)

Parameter Estimates
95% Confidence Interval
Estimate | Std. Error Wiald df Sig, Lower Bound | Upper Bound |
Threshold  [severity = 0] 4.404 1.0849 16.345 1 .non 2.2649 B.539
[severity = 1] 3105 1.301 38.814 1 .non 5.555 10.655
Location [ score 928 350 7.040 1 .003 242 1.613

e ‘Threshold’ is analogous to the intercept terms for linear, logistic and
Cox regression models

e The estimate is the odds ratio for the outcome on the natural log-scale,
the odds ratio for ‘score’ is exp(0.928) = 2.53

e For a one unit increase in questionnaire score, the odds of being in a
higher severity group increases by 2.53 times. That is:

o The odds of being either moderate or severe compared to mild are 2.53
times greater

o The odds of being severe compared to either mild or moderate are 2.53
times greater

Interpreting a binary covariate (eg. history)

Parameter Estimates
95% Confidence Interval
Estimate | Std Error Wald df Sig Lower Bound | Upper Bound |
Threshold  [severity=0] 2176 773 7935 1 aos 662 3.690
verity =11 4272 798 28683 1 000 2,708 5835
Location | [history= 1] 1.046 268 15.200 1 000 520 1.5?1]
fhistory = 0] 0% | . . 0

e The odds ratio for ‘history’ is exp(1.046) = 2.85

e The odds of being in a higher severity group increases by 2.85 times
among those with a history of depression compared to those without.
That is:

o The odds of being either moderate or severe compared to mild are 2.85
times greater for those with a history compared to those without history

o The odds of being severe compared to either mild or moderate are 2.85
times greater for those with a history compared to those without history




Assumptions of ordinal regression

The only assumption to be fulfilled when applying ordinal logistic
regression is that the parameters are the same across all categories

A test can help you assess whether this assumption is reasonable,
called ‘the test of parallel lines’

It compares the estimated model with coefficients for all categories,
to a model with a separate set of coefficients for each category

A small p-value indicates that the general model (with separate
parameters for each category) gives a significant improvement,
i.e. the above assumption is not reasonable

Are the odds the same across categories?

In the above examples, we assume that the odds ratio is the same across
categories of the ordered response

The analysis can test whether this assumption is valid

Test of Parallel Lines®

-2 Log
| Model Likelihood Chi-Square df Sig.
Mull Hypothesis 484,903
General 494,067 836 2 658

The null hypothesis states thatthe location parameters (slope ~—
coefficients) are the same across response categories.

a. Link function: Logit.

Test of parallel lines indicates that the assumption is reasonable (p > .05)




Key points

e Ordinal regression is an extension of the binary case, appropriate for
ordered categorical outcome variables

e The most common method compares the proportional log-odds of
outcome categories

o If the different categories have no natural ordering other methods exist
(multinomial or polychotomous logistic regression)

o A difficult decision needs to be made on ordinal variables with a large
number of categories - can the data be considered continuous?
(number of categories, spread of data, normality)

Introduction to Poisson regression

e Counts are another form of numeric outcome variable. Sometimes, we
can treat these as a continuous measure and use other methods such
as linear regression (but this is not always appropriate)

e Counts can be rare events, such as the number of:
o new disease cases occurring in a population over a period of time
o hospital admissions per day

e Poisson regression can be used when:

o the subjects may have the same duration of exposure (then we’re just
interested in the observed counts)

o the subjects have a different amount of exposure (eg. length of follow-up,
so we're interested in the counts after allowing for the time in the study)




e We face a constraint: counts are all positive integers. We therefore
work with the log of the counts (in a similar way to working with the log
of the odds for logistic regression)

¢ The natural logarithm of the response variable is linked to the
covariates:

log(Y) =a+ bX;+cX, +dX;+ ...

e The Poisson distribution works with the mean of the outcome measure
(a single parameter represents both the mean and the variance)

e This distribution is a natural fit for count data

When can we use linear regression instead?

o First look at the mean of the counts. It is a skewed distribution if the
mean is small, but becomes more symmetrical as the mean increases

o For large means, the Poisson distribution approaches Normality.
We might then be able to use linear regression; but can also look at a
Normal probability plot, in case the skewed distribution has just been
shifted to the right as

mean
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Looking at the distribution

Summary:
501
1 Mean = 5.7 days
Median = 3.0 days
Range = 0 to 45 days
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What the output gives you

e For each covariate we get the following statistical output:
o estimated Poisson regression coefficient (e.g. b)
o associated standard error
o confidence limits
o estimated relative rate, e.g. exp(b)
o Wald test statistic, testing b = 0 or relative rate = 1
o associated p-value

e For the overall model:
o goodness-of-fit information
o can be used when comparing models




Parameter Estimates

95% Wald Confidence Interval Hypothesis Test
| Parameter (=] Std. Error Lower Upper V\?q‘ﬂggl df Sig.
(Intercepty 27489 0920 2,569 2930 893.265 1 .00
[gender=0] -417 0502 -516 -.318 69.132 1 .000;
[gender=1] (i
age 017 0017 013 020 93.366 1 .000)

The Poisson regression can be used to predict the number of days
spent in hospital, given gender and age

Model: log(Days) = 2.749 — (0.417 x Gender) + (0.017 x Age)

[where Gender=0 for females and Gender=1 for males]

If people have been in the study for very different lengths of time, we
could include a covariate in the model to allow for this (i.e. for each

subject you have length of time, and this is included as a factor in the
regression model)

Parameter Estimates

Hypothesis Test
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The relative rate for gender is 0.66, with 95% CI 0.60 to 0.73

The number of days spent in hospital is lower for women than men
(after allowing for age); i.e. the rate is 34% lower for women (95% CI:

27 to 40%). [Gender=0 for females and 1 for males]

The number of hospital days increases as age increases (after allowing
for gender). As age increases by one year the rate increases by 2%
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Assumptions of Poisson regression

e The assumptions include:

o Logarithm of the response is approximately a straight line (analogous to
log-odds for logistic regression)

o At each level of the covariates the number of cases has variance equal
to the mean

o Observations are independent

e The same diagnostics can be used to identify violations of these
assumptions in the case of Poisson Regression

o Use plots of residuals against fitted values (i.e. how well does the model
fit the observed data values?)

Is the Poisson model reasonable?

e If the variance is greater than the mean of the data, the data is said to be
overdispersed. This can occur when:

o There are outliers
o Missing important covariates
o There is a tendency for observations to cluster

e Overdispersed data have standard errors and p-values that are too small,
and narrow confidence limits

e The Pearson adjustment (which can be specified in a stats package) can
be used to correct the standard errors and give more accurate p-values
(otherwise use more complex regression, called Negative Binomial)
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Key points

We can analyse count data by fitting Poisson regression models to the
individual frequency of events

¢ The natural logarithm of the response variable is linked to the covariates

o Different lengths of exposure time can be accounted for in the model

o Also, variables that change over time can be incorporated by dividing up
the follow-up time of each individual (eg. 5 years smoking status for each
individual gives 5 rows of data)
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