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Introduction

 Have seen outcome measures based on:

o Taking measurements on people (continuous data); linear regression

o Counting people (yes/no); logistic regression

o Time-to-event data; Cox regression

 There are other types of regression:

o Counting the number of events that have occurred (i.e. per person or 
object)

eg. number of days spent in hospital (if very skewed)

o The outcome has ≥3 categories that have a natural order to them (called 
ordered categories)

eg. disease severity (mild, moderate, severe); agreement (strongly agree, 
agree, neutral, disagree, strongly disagree)
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Ordered categorical data

 For ordered categories the researcher often chooses to divide the 
variable into two groups and apply binary logistic regression

 Although not incorrect, this method does not utilise all of the available 
information within the outcome data

 Ordinal logistic regression is an extension of binary logistic regression 
which is appropriate for ordered categorical outcome variables

 The model is based on the notion that there is some underlying 
quantitative scale

 In the binary case, we look at the probability p of a given response. 
This can only lie between 0 and 1 so we use the logit of p instead,      
i.e. log(p/1-p), when deriving the regression (because this then looks 
similar to linear regression):

logit(p) = log(p/1−p) = a + bX1 + cX2 + dX3 +....

 b can be interpreted as increasing/decreasing the log-odds of an event, 
and exp(b) is used as the odds ratio for a unit increase/decrease in 
factor b

 For ordered categories we can look at the probability pj of having a 
response less than or equal to a given group, or a higher response 
(i.e.1-pj)

Logistic regression (reminder)
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Ordinal logistic regression

 The model is similar to binary logistic regression, but the probabilities 
represent categories of a response:

 The thresholds (aj’s) correspond to the intercept in simpler models, 
these depend only on which category’s probability is being predicted

 The prediction part of the model depends only on the factors and is 
independent of the outcome category
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Choosing regression covariates

 The process of choosing variables for the model is similar to the 
process of selecting them in other types of regression models

 Both theoretical and empirical considerations should be taken into 
account when selecting variables to be included

 Individual continuous or binary variables can be assessed through 
the use of Wald tests

 Likelihoods can be used to compare nested models for categorical 
variables with ≥3 levels
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 Collect data on the severity of 400 patients with depression

Example of ordinal data

We can describe the 

data using contingency 

tables and bar charts

 Information is also collected on whether each patient has a history of 
depression (binary – yes/no) and their score from a baseline 
questionnaire (continuous scale)

 We aim to be able to see the relationship between the clinical severity 
of depression, medical history and the questionnaire score

 i.e. disease severity is the outcome variable (coded ‘0’/’1’/’2’ for the 
three levels), medical history and questionnaire score are factors

 logit(pj) = aj + (b x Score)

 logit(pj) = aj + (b x History)
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 ‘Threshold’ is analogous to the intercept terms for linear, logistic and 
Cox regression models

 The estimate is the odds ratio for the outcome on the natural log-scale, 
the odds ratio for ‘score’ is exp(0.928) = 2.53

 For a one unit increase in questionnaire score, the odds of being in a 
higher severity group increases by 2.53 times. That is:

o The odds of being either moderate or severe compared to mild are 2.53 
times greater

o The odds of being severe compared to either mild or moderate are 2.53 
times greater

Interpreting a continuous covariate (eg. score)

 The odds ratio for ‘history’ is exp(1.046) = 2.85

 The odds of being in a higher severity group increases by 2.85 times 
among those with a history of depression compared to those without. 
That is:

o The odds of being either moderate or severe compared to mild are 2.85 
times greater for those with a history compared to those without history

o The odds of being severe compared to either mild or moderate are 2.85 
times greater for those with a history compared to those without history

Interpreting a binary covariate (eg. history)
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 The only assumption to be fulfilled when applying ordinal logistic 
regression is that the parameters are the same across all categories

 A test can help you assess whether this assumption is reasonable, 
called ‘the test of parallel lines’

 It compares the estimated model with coefficients for all categories, 
to a model with a separate set of coefficients for each category

 A small p-value indicates that the general model (with separate 
parameters for each category) gives a significant improvement,     
i.e. the above assumption is not reasonable

Assumptions of ordinal regression

 In the above examples, we assume that the odds ratio is the same across 
categories of the ordered response

 The analysis can test whether this assumption is valid

 Test of parallel lines indicates that the assumption is reasonable (p > .05)

Are the odds the same across categories?
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Key points

 Ordinal regression is an extension of the binary case, appropriate for 
ordered categorical outcome variables

 The most common method compares the proportional log-odds of 
outcome categories

 If the different categories have no natural ordering other methods exist 
(multinomial or polychotomous logistic regression)

 A difficult decision needs to be made on ordinal variables with a large 
number of categories - can the data be considered continuous? 
(number of categories, spread of data, normality)

Introduction to Poisson regression

 Counts are another form of numeric outcome variable. Sometimes, we 
can treat these as a continuous measure and use other methods such 
as linear regression (but this is not always appropriate)

 Counts can be rare events, such as the number of:

o new disease cases occurring in a population over a period of time

o hospital admissions per day

 Poisson regression can be used when:

o the subjects may have the same duration of exposure (then we’re just 
interested in the observed counts)

o the subjects have a different amount of exposure (eg. length of follow-up, 
so we’re interested in the counts after allowing for the time in the study)
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 We face a constraint: counts are all positive integers. We therefore 
work with the log of the counts (in a similar way to working with the log 
of the odds for logistic regression)

 The natural logarithm of the response variable is linked to the 
covariates:

log(Y) = a + bΧ1 + cΧ2 + dΧ3 + .... 

 The Poisson distribution works with the mean of the outcome measure 
(a single parameter represents both the mean and the variance)

 This distribution is a natural fit for count data

When can we use linear regression instead?

 First look at the mean of the counts. It is a skewed distribution if the 
mean is small, but becomes more symmetrical as the mean increases

 For large means, the Poisson distribution approaches Normality.      
We might then be able to use linear regression; but can also look at a 
Normal probability plot, in case the skewed distribution has just been 
shifted to the right

http://paulbourke.net/miscellaneous/functions/
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Looking at the distribution

Summary:

Mean = 5.7 days

Median = 3.0 days

Range = 0 to 45 days

 For each covariate we get the following statistical output:

o estimated Poisson regression coefficient (e.g. b)

o associated standard error

o confidence limits

o estimated relative rate, e.g. exp(b)

o Wald test statistic, testing b = 0 or relative rate = 1

o associated p-value

 For the overall model:

o goodness-of-fit information

o can be used when comparing models

What the output gives you
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 The Poisson regression can be used to predict the number of days 
spent in hospital, given gender and age

 Model: log(Days) = 2.749 – (0.417 x Gender) + (0.017 x Age)

[where Gender=0 for females and Gender=1 for males]

 If people have been in the study for very different lengths of time, we 
could include a covariate in the model to allow for this (i.e. for each 
subject you have length of time, and this is included as a factor in the 
regression model)

 The relative rate for gender is 0.66, with 95% CI 0.60 to 0.73

 The number of days spent in hospital is lower for women than men 
(after allowing for age); i.e. the rate is 34% lower for women (95% CI: 
27 to 40%). [Gender=0 for females and 1 for males]

 The number of hospital days increases as age increases (after allowing 
for gender). As age increases by one year the rate increases by 2%
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 The assumptions include:

o Logarithm of the response is approximately a straight line (analogous to 
log-odds for logistic regression) 

o At each level of the covariates the number of cases has variance equal 
to the mean

o Observations are independent

 The same diagnostics can be used to identify violations of these 
assumptions in the case of Poisson Regression

o Use plots of residuals against fitted values (i.e. how well does the model 
fit the observed data values?)

Assumptions of Poisson regression

Is the Poisson model reasonable?

 If the variance is greater than the mean of the data, the data is said to be 
overdispersed. This can occur when:

o There are outliers

o Missing important covariates

o There is a tendency for observations to cluster

 Overdispersed data have standard errors and p-values that are too small, 
and narrow confidence limits

 The Pearson adjustment (which can be specified in a stats package) can 
be used to correct the standard errors and give more accurate p-values 
(otherwise use more complex regression, called Negative Binomial)
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 We can analyse count data by fitting Poisson regression models to the 
individual frequency of events

 The natural logarithm of the response variable is linked to the covariates

 Different lengths of exposure time can be accounted for in the model

 Also, variables that change over time can be incorporated by dividing up 
the follow-up time of each individual (eg. 5 years smoking status for each 
individual gives 5 rows of data)

Key points


