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Multiple groups or comparisons

• Comparing several groups
– When outcome measure is based on ‘counting

people’

– When the outcome measure is based on ‘taking
measurements on people’

• Having several outcome measures

Multiple groups or comparisons

• When the outcome measure is based
on ‘counting people’, this is categorical
data.

• The groups can be compared with a
simple chi-squared (or Fisher’s exact)
test.
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Comparing multiple groups
ANOVA – Analysis of variance

When the outcome measure is based on ‘taking measurements on people
data’

• For 2 groups, compare means using t-tests (if data are Normally
distributed), or Mann-Whitney (if data are skewed)

• Here, we want to compare more than 2 groups of data, where the
data is continuous (‘taking measurements on people’)

• For example, comparing blood pressure between 3 dose groups
(5mg, 10mg, 20mg) and determine which dose reduces blood
pressure the most

• For normally distributed data we can use ANOVA to compare the
means of the groups.

Example: Weight lost by rats given 3 diets; A, B & C .

• Question: Are there differences in mean weights between any of the 3
diets?

• If there are differences, where do they lie?

• Note this is a one-way ANOVA – only considering one source of
variability (Diet).

• If gender or another appropriate covariate were also important, then a
2-way ANOVA might be considered instead.

ANOVA – Example
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Within vs Between Variability

Concept of ANOVA is to separate the SOURCES of variability:

Total Variability = Variability within groups + Variability between groups

Raw data: can look at variability
within in each group

Mean values: can look at variability
between groups, i.e. how they differ from the
overall mean of 24.3

• Both samples have the same differences between group (A, B or C) means –
we can say variation between means in each data set is the same

• But the variability within a sample in each set is different. Set 1 is tighter
around its mean (lower SDs) than set 2.

• Although they have the same difference between the means, which data set
is more reliable to make judgements about real differences between A B and
C?

Rat sample 1 Rat sample 2

Mean
SD

Mean
SD
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• The ratio of the variability Between means to variability Within the
samples is used to determine whether differences in means exist:

• There appears to be stronger evidence supporting true differences
between means in data set 1 than in data set 2 because the within
group variability (i.e. within A, B or C) is smaller when compared to
the between group variability

• If the ratio of Between to Within is > 1 then it indicates that there
may be differences between the groups .

• Results displayed in an ANOVA table

Variability Rat sample 1 Rat sample 2

Between Same Same

Within Smaller Larger

Ratio Larger in sample 1 than sample 2

Rat ID number Diet Weight(g)

1 A 23.84

2 A 23.21

3 B 20.66

4 B 24.34

5 C 23.90

6 C 31.10

etc.

Data entry

Most stats packages will require data to be in the form above (rather
than in separate columns for each diet as in the previous slide).
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Below is the output from SPSS, comparing the mean weights of the
rats in Sample 2

P-value for the
differences
between diet
groups

Between Diet (group)
variability

Within Diet (group)
variability

Ratio of between
To within variability

One-way ANOVA in SPSS

What would happen if we ran the same test on sample 1? (The sample
of rats with less variability)

The larger ratio, gives us an
even smaller p-value; we
can be more sure that there
is a real difference between
the diets.

Between Diet (group)
variability is the same
(~79)

Within Diet (group)
Variability is MUCH smaller

The smaller within diet
variability leads to a much
larger ratio

One-way ANOVA in SPSS
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• Now that we know that the mean weights are different (F-test) across
the diets groups, which particular diets are different from each other?

Diet A Diet B Diet C

21.3g 24.8g 26.9g

• Mean weight lost after diet C is greater than the other 2 diets

• There are larger differences in weight lost between diets A vs. C than
diet B vs. C (5.6g difference and 2.1g difference)

• Diets B and C might be more similar because the mean rat
weights are closer together.

• Need to do pairwise tests ( A vs. B, A vs. C) to confirm
whether diet A (standard) is significantly different to the other 2 diets

• Many researchers are interested in pairwise
comparisons.

• They often do several independent t-tests (for
continuous data)

• E.g.: if there are 3 groups of people, A, B & C, there is a
separate t-test for

• A vs B
• A vs C
• B vs C

• Suppose we wanted to examine differences between 5
groups; there are 10 possible pairs, and therefore 10
effect sizes and 10 p-values.
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• The usual error rate for a single comparison is 5%, i.e.
we allow ourselves to falsely conclude that there is an
effect, when there really isn’t one, 5% of the time (or 1 in
every 20 studies of the same size)

• If each t-test is done at the 5% level, then the overall
error rate for 10 comparisons is 1 – [( 1-a)10] , i.e. 1 –
[(1-0.05)10] which = 0.4, or 40%!

• We could make a mistake (false conclusion) 40% of the
time

• Do not perform lots of independent pairwise
comparisons

There are different approaches to control the false positive
error rate, but a simple way for continuous data (‘taking
measurements on people’) is as follows:

a) First we see if at least one of the means differ from the
others. We use a test called the F-test from the ANOVA

b) If the p-value is small (i.e. <0.05), we know that at least
one of the groups is different to the others, so then we can
proceed to look at differences between specific groups.
Otherwise, conclude there is no evidence of a difference
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• We are not usually interested in all comparisons
• They are usually pre-planned
• E.g., New Diets B and C, each compared with a standard Diet A (i.e.

2 main comparisons)
• Comparing between B and C might be of less importance

• The ANOVA provides a p-value and 95% CI that allows for having
several other comparisons. These are the ones to interpret

• Note the impact on p-values and wider confidence intervals to adjust
for having ≥2 comparisons (i.e. a higher false positive rate)

Comparison Estimate Raw p-value
(95% CI)

Adjusted p-
value

A vs. B -3.4 0.055
(-7.0 to 0.09)

0.17
(-7.8 to 0.9)

A vs. C -5.6 0.003
(-9.1 to -2.1)

0.009
(-10 to -1.2)

Non-Parametric testing

• When the data are not Normally distributed, we use a non-parametric
analogue of one-way ANOVA (called Kruskal-Wallis ANOVA)

• It is an extension of the Wilcoxon Rank Sum test

• The analysis is based on the ranks of the data (not the actual values)

• Example uses the same data – Compare Weights of Rats from 3 diets
A, B and C
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Kruskal-Wallis Test in SPSS

• The p-value tells you if there is a
difference somewhere between the
groups. As with ANOVA we would need
to inspect the data/perform pairwise
tests to find out where.

• When presenting/interpreting the results
we would present the medians along
with the p-value.

• The Wilcoxon Mann-Whitney test can
be used to perform pairwise
comparisons, but as before, you may
need consider adjusting the p-values for
multiple tests.

• The more analyses done on the same dataset, the more likely that you
are to find a statistically significant result, when there really isn’t an
effect

Example: examining a new treatment for COPD (New vs Standard)

• Possible primary endpoints are:
– FEV1 (Forced Expiratory Volume in 1 Second)

– FVC (Forced Vital Capacity)

– FEV1/FVC

– Number of exacerbations

– Time until first exacerbation

– Time until treatment stopped early

• Each of these can be examined in relation to the treatment allocation to
produce an effect size (a mean difference, or regression coefficient),
95% CI and p-value

• But this increases the error rate (as in having multiple comparisons)

Multiple endpoints
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Simple solutions

• Have 1 or 2 pre-specified endpoints

• These are the ones on which you will make major decisions.

• Adjust p-values using the Bonferroni adjustment (there are
other, more complex methods to adjust p-values)

• Alternatively, specifically state that the study is a pilot or
feasibility (hypothesis generating), and don’t adjust the p-values.
But make clear that further confirmatory studies are needed.

Bonferroni adjustment

There are two ways we can perform a Bonferroni adjustment:

1. Reduce the p-value cut off. If you are performing 4 comparisons,
your cut off is divided by 4 so, for a result to be counted as
statistically significant it needs to be <0.0125 (i.e. 0.05/4).

2. If the raw p-value is <0.05 adjust it by multiplying by the number of
comparisons performed.

• The advantage of this method is that, we are still looking for
value below 0.05. As we are so wedded to this cut off, there
can be a temptation (when using method 1) for the
investigator (or reader) to consider p-values <0.05 but
greater than 0.0125 (or whatever reduced limit is being
used) to be significant.
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Bonferroni adjustment

Endpoint
Raw/unadjusted

p-value

Adjusted p-value (simply multiply
the raw p-value by 4 if p<0.05, i.e.

the number of comparisons)

FEV1 0.001 0.004

FVC 0.03 0.12

No. of exacerbations 0.04 0.16

Time until first
exacerbation

0.67 0.67

Bonferroni adjustment

• When adjusting p-values this way, we do need to be wary of
borderline values.

• Any value originally over 0.05 should be considered non-significant
(i.e. a p-value of 0.06 (>0.05 so not adjusted) should not be
considered better evidence of an effect that a p-value of 0.049 (raw)
which becomes 0.196 (adjusted).

• Another problem with the Bonferroni adjustment, is that it assumes
no relationship between the endpoints, and this is unlikely to be true
in most situations.

• You could therefore be inflating each p-value too much, and so could
miss a real effect.
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Two possible solutions:

1) Provide the unadjusted p-values.

Small ones (p<0.001) should be OK, since they should remain small
even after allowing for several comparisons

2) Be cautious about 0.05<p<0.01

• Provide 97.5% confidence intervals for the effects sizes if there are,
say 2 or 3 endpoints, and 99% CIs for >3 endpoints

• These give a conservative range of true effect sizes.

• If a 99% CI still does not include the no effect value, then there is
likely to be a real effect

• If using 97.5% CI, then the p-value cut-off to determine statistical
significance should then be 0.025 (not 0.05 as is usual)

• If using 99% CI, then the p-value cut-off to determine statistical
significance should then be 0.01 (not 0.05 as is usual)

Endpoint

(all are measured
on a 0 to 100 scale)

Effect size (mean
difference), 99%

CI

Unadjusted
p-value

Possible conclusions

Global health status -0.6 (-4.0, +2.7) 0.62

Nausea & vomiting -1.9 (-4.4, +0.6) 0.048

Insomnia -10.0 (-14.5, -5.5) <0.0001

Constipation +10.6 (+6.2, +15.0) <0.0001

Financial difficulties +3.6 (-1.5, +8.8) 0.07

Note: For 99% CI, the p-value should be < 0.01 and not < 0.05

Example: quality of life measured in a trial comparing 2 treatments.
The survey has 25 items so each is an endpoint (5 are shown below), the survey is
administered several times per patient over time (i.e. repeated measures)
We could therefore have 25 separate (mixed modelling) results

Changing the confidence interval: an example
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Endpoint

(all are measured
on a 0 to 100 scale)

Effect size (mean
difference), 99%
CI

Unadjusted
p-value

Possible conclusions

Global health status -0.6 (-4.0, +2.7) 0.62 No evidence of an effect

Nausea & vomiting -1.9 (-4.4, +0.6) 0.048 Insufficient evidence of
an effect, but there might
be

Insomnia -10.0 (-14.5, -5.5) <0.0001 Evidence of an effect

Constipation +10.6 (+6.2, +15.0) <0.0001 Evidence of an effect

Financial difficulties +3.6 (-1.5, +8.8) 0.07 No evidence of an effect

Note: For 99% CI, the p-value should be < 0.01 and not < 0.05

Changing the confidence interval: an example

Endpoint

(all are measured
on a 0 to 100 scale)

Effect size (mean
difference), 99%
CI

Unadjusted
p-value

Possible conclusions

Global health status -0.6 (-4.0, +2.7) 0.62 No evidence of an effect

Nausea & vomiting -1.9 (-4.4, +0.6) 0.048 Insufficient evidence of
an effect, but there might
be

Insomnia -10.0 (-14.5, -5.5) <0.0001 Evidence of an effect

Constipation +10.6 (+6.2, +15.0) <0.0001 Evidence of an effect

Financial difficulties +3.6 (-1.5, +8.8) 0.07 No evidence of an effect

Note: For 99% CI, the p-value should be < 0.01 and not < 0.05

Changing the confidence interval: an example


