
Examining several factors together 

(multivariable) 



• In previous sessions, we looked at examining:

 one factor and comparing it between two different groups of people 

(or things)

 the association between two factors, both measured on a single 

group of people (or things)

• These can be referred to as ‘univariate’ or ‘univariable’ analyses

• E.g. examining the relationship between a single response variable 

(blood pressure) and only one other variable (age)  

• A linear regression (previous session) of blood pressure and age was:

BP = 13.3+1.7(Age)

• But what if blood pressure is also affected by gender?

• How can we allow for this?



Multivariable Analysis 

• Here we look at the same relationships as we may do with a univariable 

analysis, but we want to simultaneously consider several other factors 

• Reasons for doing this could include:

 Adjusting for confounders when looking at a single risk factor and 

its effect on the risk of a disease/event

 Finding a set of prognostic factors that could be used to predict the 

risk of disease/event

 To correct for imbalances in subject characteristics in a clinical trial 

or laboratory experiment

 To examine interactions between factors



Outcome measure Method Effect size produced in 

terms of:

Taking measurements 

on people

Continuous data Multiple linear 

regression

Mean difference for 

categorical data or slope 

for continuous data

Counting people Binary or 

categorical data

Multiple logistic 

regression

Odds ratio

Time-to-event (not everyone 

has had event of 

interest)

Multiple Cox 

regression

Hazard ratio

• Multivariable regressions are just an extension of the regression 

techniques already seen to examine a single factor 



Y = a + bX1 + cX2 + dX3

Outcome measure (Y)

Can be one of the following:

• Continuous (taking measurements)

• Binary (counting people)

• Ordered categorical (counting people)

[but not easy!]

• Time-to-event

Regression models are of the form:

Factors to examine (X1, X2, X3) – called covariates

Can be any mixture of:

• Continuous (taking measurements), including

time-to-event, but only if everyone has had the event 

• Binary (counting people)

• Categorical (counting people)

This is what determines which method to use



Example

• Blood pressure (mmHg) of 50 patients is measured 

• We want to know blood pressure is associated with other factors:

– Age (in years)

– Gender (male, female)

– Social Class (low, lower middle, upper middle, high)

• For binary factor, it is best to code as 0 and 1

• For categorical factor, code as 0,1, 2 and 3



Linear Regression Output - Unadjusted

Age is a significant 

predictor / important

Blood pressure increases by 1.7 mmHg 

as age increases by a year



Linear Regression Output - Unadjusted

~80% of the variability in blood pressure is 

explained by age alone used in the model.

This does not tell us how well the model fits!

Age is a significant 

predictor / important

(it is the only predictor 

in the model)



Linear Regression Output - Unadjusted

Gender is a significant 

predictor / important

Blood pressure is 13.6 mmHg 

lower in females than males



Linear Regression Output - Unadjusted

Gender is a significant 

predictor / important

(it is the only predictor 

in the model)
~30% of the variability in blood pressure is 

explained by gender alone used in the model



Linear Regression Output - Unadjusted

There is not much difference in blood pressure between the social 

classes (e.g. mean difference of 0.462 between low and high)

Don’t use for factors with multiple groups!



Linear Regression Output - Unadjusted

Social class is not a 

significant predictor / 

important (it is the only 

predictor in the model)
<1% of the variability in blood pressure is 

explained by social class alone used in the model



Don’t use for factors with multiple groups!

Linear Regression Output – After Adjusting

for Age, Gender, and Social Class

Blood pressure increases by 1.7 mmHg as age increases by 1 year, after adjusting for the other factors

Blood pressure 3.3 mmHg lower in females than males, after adjusting for the other factors

e.g. Blood pressure is 4.6 mmHg lower in high compared to low category, after adjusting for the other factors



At least one

of the factors

is a significant 

predictor / 

important

>80% of the variability in blood pressure is explained by the multivariable regression

Social class is not a 

significant predictor / 

important

Linear Regression Output – After Adjusting

for Age, Gender, and Social Class



Interpretation

• For continuous variables (i.e. age), the ‘parameter estimate’ represents the 

increase in blood pressure for an increase in age of 1 unit (i.e. as age increases by 1 

year, blood pressure increases by 1.7 mmHg. This is adjusted for all the other 

variables. The 95% CI is the range of possible true effect sizes

• For binary variables (i.e. gender), the ‘parameter estimate’ represents the 

difference in the mean blood pressure adjusted for all the other variables. E.g., the 

estimated difference in blood pressure between males and females is 3.3 mmHg

• These are all effect sizes (they involve making comparisons), they are mean 

differences, and the no effect value is 0

• For both of these types of variables, the p-value given alongside is the one to use to 

determine whether each variable is an important factor or not, i.e. whether the 

observed effect size could be a chance finding in this particular study (there is only 

1 p-value for each factor)



Interpretation

• For categorical variables with 3 levels (i.e. social class), you need to specify 

which level becomes the reference group (check coding - usually first or last group)

• The ‘parameter estimate’ is then the mean difference in blood pressure between  

each level and the reference group, adjusted for all the other variables

– The difference between High and Low categories = -4.6 mmHg

– The difference between Upper middle and Low categories = -2.2 mmHg

– The difference between Lower middle and Low categories = -1.0 mmHg

• However, do not use the p-value alongside each level. You now have 3 p-values for 

the factor ‘social class’ (if it had 5 levels, you would have 4 p-values) – this can be 

difficult to interpret

• Use p-value from an F-test to determine whether ‘social class’ is important or not. It 

tells us overall whether social class is an important predictor of blood pressure (we 

now have only 1 p-value to consider for each factor)



• Plot of residuals versus predicted blood pressure should be a random 

scatter around zero (a)

• Residual = observed value minus predicted value from model

• Plot of residuals versus all other variables should be a random scatter around 

zero. For example age (b)

residuals

(a)

Predicted

BP

residuals

(b)

Age

Is a Linear Model suitable for Age? Probably not

Model Checks



Multiple Logistic Regression

• We can extend logistic regression to adjust for multiple factors when the 

outcome has two levels (i.e. binary), such as in the hospital admission 

example seen earlier

• Similar principles as (multiple) linear regression, except the effect sizes 

are now ‘Odds Ratios’ and the no effect value is 1

• It has some useful mathematical properties that allow easier modelling 

(compared to relative risk)

• If there are many cells with no responses, the model could be unreliable 

(the estimates of effect size and standard errors could be extremely small 

or big). Therefore, consider combining cells with small numbers



Don’t use for factors with multiple groups!

Logistic Regression Output – After Adjusting

for Age, Gender, and Social Class

Age is a significant predictor (p=0.003). The odds of 

hospital admission increases by 4.1 % as age increases by 

1 year, after adjusting for the other factors

The odds of admission increases may 

be 80% lower or more than six-times 

higher in females than males, after 

adjusting for the other factors

Each ‘estimate’ is the log-odds, so we take exponentials (the effect size is the odds ratio)



At least one of the factors is a significant 

predictor / important (p<.001)

Social class is not a significant 

predictor / important (p=0.25)

Logistic Regression Output – After Adjusting

for Age, Gender, and Social Class

• As in the linear regression analysis, if the factor is categorical with 3 

levels we use a different test to see whether the factor is important or not 

(called the ‘change in deviance’)

• This avoids having to interpret several p-values for a single factor



The model fit is fine

• Goodness of Fit: How well does the data fit the model?

• In Multiple Linear Regression check residuals versus all of the variables 

by plotting them (non constant variance)

• In Multiple Logistic regression – the most common method is called the 

Hosmer & Lemeshow Test. If significant, this suggests the model does 

not fit the data well



Time-to-Event Outcomes – Cox regression

• The approach is analogous to multiple linear or multiple logistic 

regression, but the outcome measure is time until an event has occurred

• One main difference is that this method produces the hazard ratio as 

the effect size

• This is the risk of having an event in one group, compared to the risk in 

the reference group, at the same point in time

• Like other multivariate methods, the hazard ratio (effect size) can be 

adjusted for any other variables



Don’t use for factors with multiple groups!

Cox Regression Output – After Adjusting

for Age, Gender, and Social Class

Age is a significant predictor (p<0.001). The risk of 

death increases by 15.7% as age increases by 1 year, 

after adjusting for the other factors

The risk of death may be 25% lower or 

four-times higher in females than males, 

after adjusting for the other factors

Each ‘estimate’ is the log-odds, so we take exponentials (the effect size is the hazard ratio)



At least one of the factors is a significant 

predictor / important (p<.001)

Social class is not a significant 

predictor / important (p=0.13)

Cox Regression Output – After Adjusting

for Age, Gender, and Social Class

• Again, as in the other types of regression, if the factor is categorical with 3 

levels we use a different test to see whether the factor is important or not

• This avoids having to interpret several p-values for a single factor



All of the regression models covered above can be of the same form, and the factors that can be examined together 

can be any mixture of continuous, binary or categorical. You just need to know what the coefficients mean

Regression model Continuous

(taking measurements)

Binary (2 levels)

(counting)

Categorical (≥3 levels)

(counting)

Type of outcome measure, 

Y

Y = a                                  + B x Age + C x Gender                            + D x Social class

(‘a’ is intercept) (low, low-mid,

upper-mid, high)

Taking measurements 

(continuous)

E.g. Y=blood pressure

Linear As age increases by 1 unit, Y 

increases by B (same 

interpretation as simple linear 

regression slope)

C is the mean difference in Y 

between males and females 

(e.g. mean blood pressure in 

males minus mean blood 

pressure in females)

There will be three values 

for D. Each one is the 

mean difference in Y 

between the reference 

group which you choose 

(e.g. low) and each of the 

other categories

Counting people (binary)

E.g. Y=hospital

admission/none

Logistic B is the odds ratio (log scale) 

for Y. As age increases by 1 

unit. E.g. if OR=1.25, as age 

increases by 1 year, the 

chance of admission increases 

by 25%

C is the odds ratio (log scale) 

for Y (e.g. admission) for 

males compared to females. 

E.g. if OR=0.75, then the risk 

of admission in females is 25% 

lower than the risk in males

There will be three values 

for D.  Each one is the 

odds ratio (log scale) of Y 

(e.g. admission) between 

the reference group which 

you choose (e.g. low) and 

each of the other 

categories. Same 

interpretation as C.

Time-to-event

E.g. Y=survival time

(the time it takes to die, but 

also some people haven’t 

died yet)

Cox B is the hazard ratio (log 

scale); but the same 

interpretation as odds ratio 

above. E.g. if HR=1.25, as 

age increases by 1 year, the 

chance of dying increases by 

25%

C is the hazard ratio (log

scale); but the same 

interpretation as odds ratio 

above. It is the risk of having 

an event (for whatever you 

have defined as an event)

D is the hazard ratio 

(there will be three values, 

log scale); but the same 

interpretation as odds ratio 

above.


