Examining several factors together
(multivariable)



In previous sessions, we looked at examining:
» one factor and comparing it between two different groups of people
(or things)
» the association between two factors, both measured on a single
group of people (or things)
These can be referred to as ‘univariate’ or ‘univariable’ analyses

E.g. examining the relationship between a single response variable
(blood pressure) and only one other variable (age)

A linear regression (previous session) of blood pressure and age was:
BP = 13.3+1.7(Age)

But what if blood pressure is also affected by gender?
How can we allow for this?



Multivariable Analysis

« Here we look at the same relationships as we may do with a univariable
analysis, but we want to simultaneously consider several other factors

« Reasons for doing this could include:

>

>

Adjusting for confounders when looking at a single risk factor and
its effect on the risk of a disease/event

Finding a set of prognostic factors that could be used to predict the
risk of disease/event

To correct for imbalances in subject characteristics in a clinical trial
or laboratory experiment

To examine interactions between factors




« Multivariable regressions are just an extension of the regression
techniques already seen to examine a single factor

Outcome measure

Method

Effect size produced in
terms of:

Taking measurements
on people

Continuous data

Multiple linear
regression

Mean difference for
categorical data or slope
for continuous data

Counting people

Binary or

Multiple logistic

Odds ratio

categorical data | regression
Time-to-event (not everyone Multiple Cox Hazard ratio
has had event of | regression

interest)




Regression models are of the form:

Y =a+bX; +cX,+dX,

/NN N

Outcome measure (Y) Factors to examine (X, X,, X;) — called covariates
Can be one of the following: Can be any mixture of:

« Continuous (taking measurements) « Continuous (taking measurements), including

* Binary (counting people) time-to-event, but only if everyone has had the event
* Ordered categorical (counting people) * Binary (counting people)

[but not easy!] « Categorical (counting people)

 Time-to-event

This is what determines which method to use



Example

« Blood pressure (mmHg) of 50 patients is measured

« \We want to know blood pressure is associated with other factors:
— Age (in years)
— Gender (male, female)
— Social Class (low, lower middle, upper middle, high)

« For binary factor, it is best to code as 0 and 1
« For categorical factor, code as 0,1, 2 and 3



Linear Regression Output - Unadjusted

Parameter Estimates

Dependent Variable: Systolic_BP

Blood pressure increases by 1.7 mmHg

A

as age increases by a year

Parameter B Std. Error t Sig. 95% Confidence Interval
Lower Bound | Upper Bound
Intercept 13.300 7.331 1.814 076 -1.440 28.041
| Age ( 1749 > 128 13.695 000 > 1.492 2.005

\

Age is a significant
predictor / important




Linear Regression Output - Unadjusted

Tests of Between-Subjects Effects
Dependent Variable: Systolic_BP

Source Type lll Sum of df Mean Square F Sig.
Squares
Corrected Model 6203.9022 1 6203.902 | 187.550 .000 >
Intercept 108.873 1 108.873 3.291 076
Age 6203.902 1 6203.902 | 187.550 .000
Error 1587.778 48 33.079
Total 647146.000 50
Corrected Total 7791680 49
Ca. R Squared = .796 (Adjusted R Squared = .792) Age is a significant
predictor / important
I (it is the only predictor

~80% of the variability in blood pressure is In the model)

explained by age alone used in the model.
This does not tell us how well the model fits!



Linear Regression Output - Unadjusted

Parameter Estimates

Dependent Variable: Systolic=BP

Parameter B Std. Error t Sig. 95% Confidence Interval

Lower Bound Upper Bound
Intercept 119.880 2.137 56.100 .000 115.583 124177
[Gender=female] -13.600 > 3.022 -4.500 .000 > -19.676 -7.524
[Gender=male] f 02 : : : \

a. This parameteris/setto zero because itis redundant.

Gender is a significant
predictor / important

Blood pressure is 13.6 mmHg
lower in females than males



Linear Regression Output - Unadjusted

Dependent Variable: Systolic_BP

Tests of Between-Subjects Effects

Source Type Il Sum of df Mean Square F Sig.
Squares

Corrected Model 2312.00072 1 2312.000 20.252 .000 >

Intercept 639354.320 1 639354.320| 5600.511 .000

Gender 2312.000 1 2312.000 20.252 .000

Error 5479.680 48 114.160

Total 647146.000 50

Corrected Total 2791680 49

@ared = .297 (Adjusted R Squared = .282

|

~30% of the variability in blood pressure is
explained by gender alone used in the model

Gender is a significant
predictor / important
(it is the only predictor
in the model)



Linear Regression Output - Unadjusted

Parameter Estimates

Dependent Variable: Systolic_BP

Don’t use for factors with multiple groups!

95% Confidence Interval

Parameter B Std. Error Lower Bound | Upper Bound
Intercept 111.923 3.598 31104 104, ——1%
[SE_class=High] 5.089 091 10.705
[SE_class=Upper middle 5.194 384 12.448 >
[SE_class=Lower middle 5104 448 12.782
_/

[SE_class=Low]

a. This parameter is setto zero because itis redundant.

There is not much difference in blood pressure between the social
classes (e.g. mean difference of 0.462 between low and high)



Linear Regression Output - Unadjusted

Tests of Between-Subjects Effects

Dependent Variable: Systolic_BP

Source Type lll Sum of df Mean Square F Sig.
Squares

Corrected Model 48.5132 3 16.171 .096 962 >

Intercept 638767.102 1 638767.102| 3794.738 .000

SE_class 48.513 3 16.171 .096 < 962 >

Error 7743.167 46 168.330

Total 647146.000 50

Corrected Total 7791.680 49

@;d = .006 (Adjusted R Squared =-.059

|

<1% of the variability in blood pressure is
explained by social class alone used in the model

Social class is not a
significant predictor /
Important (it is the only
predictor in the model)



Linear Regression Output — After Adjusting
for Age, Gender, and Social Class

Blood pressure increases by 1.7 mmHg as age increases by 1 year, after adjusting for the other factors
Blood pressure 3.3 mmHg lower in females than males, after adjusting for the other factors

Parameter Estimates

DependentVariable: \systolic_BF

45% Confidence Interval
Parameter B Stdl. Error \1\ Siag. Lower Bound | Upper Bound
Intercept - 8.852 1.954 ~ /8 - 4496 35183
[Gender=Femalg] 1.793 -1.828 -6.892 336
[Gender=Maleg] . . ) .
[SE_class=High] 2186 2.096 -3.9849 -177
[SE_class=Upper middle] 2183 1.005 -6.585 2.206
[SE_class=Lower middlg] 2.180 455 -5.420 3.4049
[SE_class=Low] . . . ) .
Age 142 11.748 000 \ 1.385 1.959
/ Don’t use for factors with multiple groups!

e.g. Blood pressure is 4.6 mmHg lower in high compared to low category, after adjusting for the other factors



Linear Regression Output — After Adjusting

for Age, Gender, and Social Class

Tests of Between-Subjects Effects

At least one
of the factors
Is a significant

Dependent Variable: Systolic_BP predictor /
Source Type Il Sum of df Mean Square F Sig. Important
Squares
Corrected Model 6484.5292 5 1296.906 43.655 .000
Intercept 138.928 1 138.928 4.676 036
Age 4101.015 1 4101.015 138.044 .000
Gender 99.272 1 99.272 3.342 074
SE_class 144.147 3 48.049 1.617 199
Error 1307.151 44 29.708
Total 647146.000 50
Corrected Total 7791.680 49
@;d = 832 (Adjusted R Squared = 813 Social class is not a
significant predictor /
I important

>80% of the variability in blood pressure is explained by the multivariable regression



Interpretation

For continuous variables (i.e. age), the ‘parameter estimate’ represents the
increase in blood pressure for an increase in age of 1 unit (i.e. as age increases by 1
year, blood pressure increases by 1.7 mmHg. This is adjusted for all the other
variables. The 95% CI is the range of possible true effect sizes

For binary variables (i.e. gender), the ‘parameter estimate’ represents the
difference in the mean blood pressure adjusted for all the other variables. E.g., the
estimated difference in blood pressure between males and females is 3.3 mmHg

These are all effect sizes (they involve making comparisons), they are mean
differences, and the no effect value is 0

For both of these types of variables, the p-value given alongside is the one to use to
determine whether each variable is an important factor or not, i.e. whether the
observed effect size could be a chance finding in this particular study (there is only
1 p-value for each factor)



Interpretation

For categorical variables with >3 levels (i.e. social class), you need to specify
which level becomes the reference group (check coding - usually first or last group)

The ‘parameter estimate’ is then the mean difference in blood pressure between
each level and the reference group, adjusted for all the other variables

— The difference between High and Low categories = -4.6 mmHg
— The difference between Upper middle and Low categories = -2.2 mmHg
— The difference between Lower middle and Low categories = -1.0 mmHg

However, do not use the p-value alongside each level. You now have 3 p-values for
the factor ‘social class’ (if it had 5 levels, you would have 4 p-values) — this can be
difficult to interpret

Use p-value from an F-test to determine whether ‘social class’ is important or not. It
tells us overall whether social class is an important predictor of blood pressure (we
now have only 1 p-value to consider for each factor)



Model Checks

» Plot of residuals versus predicted blood pressure should be a random
scatter around zero (a)

* Residual = observed value minus predicted value from model

« Plot of residuals versus all other variables should be a random scatter around
zero. For example age (b)

() o (b) ° ©
Predicted ° o ° Age | ° °
(@)
BP © (@) (@) (@)
(@) (@)
(@) (@) (@) °
© (@) © e O
(@)
residuals residuals

Is a Linear Model suitable for Age? Probably not



Multiple Logistic Regression

We can extend logistic regression to adjust for multiple factors when the
outcome has two levels (i.e. binary), such as in the hospital admission
example seen earlier

Similar principles as (multiple) linear regression, except the effect sizes
are now ‘Odds Ratios’ and the no effect value is 1

It has some useful mathematical properties that allow easier modelling
(compared to relative risk)

If there are many cells with no responses, the model could be unreliable
(the estimates of effect size and standard errors could be extremely small
or big). Therefore, consider combining cells with small numbers




Logistic Regression Output — After Adjusting

for Age, Gender, and Social Class

Age is a significant predictor (p=0.003). The odds of

hospital admission increases by 4.1 % as age increases by

1 year, after adjusting for the other factors

Variables in the

uation

The odds of admission increases may
be 80% lower or more than six-times
higher in females than males, after

adjusting for the other factors

B S.E. Wald
Step1?  Age 340 113 9.078 1
Gender 45 .8a4 026 1
SE_class 3.5048 3
SE_class(1) -1.794 1.263 2.018 1
SE_class(2) 232 1.376 028 1
SE_class(3) -1.447 1.227 1.391 1
Constant -17.333 f.814 2.873 1

895% C.Lfor EHF‘I{E]I/

Lower

1.013

199

Uppery

320

RiED

66
1.262
235
.0oo

014
085
021

1.976
18.722
2.607

a.Variable(s) entered on step 1: SE_class.

Don’t use for factors with multiple groups!

Each ‘estimate’ is the log-odds, so we take exponentials (the effect size is the odds ratio)



Logistic Regression Output — After Adjusting
for Age, Gender, and Social Class

« As in the linear regression analysis, if the factor is categorical with >3
levels we use a different test to see whether the factor is important or not

(called the ‘change in deviance’)

« This avoids having to interpret several p-values for a single factor

Omnibus Tests of Model Coefficients

Chi-square

df

( 4129

Step 12 Block
Model

4129
25.832

a. Variable(s) entered on step 1: SE_class.

Social class is not a significant
predictor / important (p=0.25)

At least one of the factors is a significant
predictor / important (p<.001)



Goodness of Fit: How well does the data fit the model?

In Multiple Linear Regression check residuals versus all of the variables
by plotting them (non constant variance)

In Multiple Logistic regression — the most common method is called the
Hosmer & Lemeshow Test. If significant, this suggests the model does

not fit the data well

Hosmer and Lemeshow Test

Step Chi-square

df

Sig.

1 10.941

205

The model fit is fine



Time-to-Event Outcomes — Cox regression

The approach is analogous to multiple linear or multiple logistic
regression, but the outcome measure is time until an event has occurred

One main difference is that this method produces the hazard ratio as
the effect size

This is the risk of having an event in one group, compared to the risk in
the reference group, at the same point in time

Like other multivariate methods, the hazard ratio (effect size) can be
adjusted for any other variables




Cox Regression Output — After Adjusting
for Age, Gender, and Social Class

The risk of death may be 25% lower or
four-times higher in females than males,
after adjusting for the other factors

Age is a significant predictor (p<0.001). The risk of
death increases by 15.7% as age increases by 1 year,
after adjusting for the other factors

les in the Equation

95.0% Cl for ¢xp(5}
B SE Wald df \‘:-‘Aig. Exp(B) Lower pper

Age 146 036 16.268 1 11567 1.078
Gender 564 4349 1.650 1 1.757 T44 415
SE_class 5.368 3
SE_classi1) -678 A1 1.284 1 Raliy 206 1.625
SE_class(2) - 508 A5 1.267 1 602 244 1.457
SE_class(3) -1.244 540 5,316 1 .288 00 830

Don’t use for factors with multiple groups!

Each ‘estimate’ is the log-odds, so we take exponentials (the effect size is the hazard ratio)




Cox Regression Output — After Adjusting

for Age, Gender, and Social Class

« Again, as in the other types of regression, if the factor is categorical with >3
levels we use a different test to see whether the factor is important or not
« This avoids having to interpret several p-values for a single factor

Omnibus Tests of Model Coefficients

Social class is not a significant
predictor / important (p=0.13)

-2 Log Overall (score) Change From Previous Step
Likelihood Chi-square | df | Sig. | Chi-square | df Sig.
220.808 26.964 | 5¢.00 ) 5.607| 3 132

D

At least one of the factors is a significant
predictor / important (p<.001)



All of the regression models covered above can be of the same form, and the factors that can be examined together
can be any mixture of continuous, binary or categorical. You just need to know what the coefficients mean

Regression model

Continuous
(taking measurements)

Binary (2 levels)
(counting)

Categorical (>3 levels)
(counting)

Type of outcome measure,
Y

Y=a
(‘a’ is intercept)

+ B X Age

+ C x Gender

+ D x Social class
(low, low-mid,
upper-mid, high)

E.g. Y=survival time

(the time it takes to die, but
also some people haven’t
died yet)

scale); but the same
interpretation as odds ratio
above. E.g. if HR=1.25, as
age increases by 1 year, the
chance of dying increases by
25%

scale); but the same
interpretation as odds ratio
above. It is the risk of having
an event (for whatever you
have defined as an event)

Taking measurements Linear As age increases by 1 unit, Y | Cisthe mean differencein’Y | There will be three values
(continuous) increases by B (same between males and females for D. Each one is the
E.g. Y=blood pressure interpretation as simple linear | (e.g. mean blood pressure in mean difference in Y
regression slope) males minus mean blood between the reference
pressure in females) group which you choose
(e.g. low) and each of the
other categories
Counting people (binary) Logistic B is the odds ratio (log scale) [ C isthe odds ratio (log scale) | There will be three values
E.g. Y=hospital for Y. As age increases by 1 for Y (e.g. admission) for for D. Each one is the
admission/none unit. E.g. if OR=1.25, as age males compared to females. odds ratio (log scale) of Y
increases by 1 year, the E.g. if OR=0.75, then the risk (e.g. admission) between
chance of admission increases | of admission in females is 25% | the reference group which
by 25% lower than the risk in males you choose (e.g. low) and
each of the other
categories. Same
interpretation as C.
Time-to-event Cox B is the hazard ratio (log C is the hazard ratio (log D is the hazard ratio

(there will be three values,
log scale); but the same
interpretation as odds ratio
above.




