Outcome measures based on taking measurements on people or things (i.e. continuous data)

Understanding measurement data

Example:

The following data are cholesterol levels (mmol/L) of 40 healthy men all aged 45 years. How can we describe the distribution of cholesterol in this SAMPLE of men?

3.6	3.8	3.9	4.1	4.2	4.5	4.5	4.8
5.1	5.3	5.4	5.4	5.6	5.8	5.9	6.0
6.1	6.1	6.2	6.3	6.4	6.5	6.6	6.8
6.9	7.1	7.2	7.2	7.3	7.4	7.5	7.7
8.0	8.1	8.1	8.2	8.3	9.0	9.1	10.0

For this type of data, we need:

- Some measure of what a typical value is
- Some measure of spread
- What do you think they might be?

Divide the cholesterol values into groups, and count how
many men are in each group (frequency table)

Cholesterol (mmol/L)	Number	Percentage (%)
3.0 - 3.9	3	7.5
4.0-4.9	5	12.5
5.0-5.9	7	17.5
6.0 - 6.9	10	25.0
7.0-7.9	7	17.5
8.0 - 8.9	5	12.5
9.0 - 9.9	2	5.0
10.0 - 10.9	1	2.5
Total	40	100.0

Symmetric data

Mean cholesterol = 6.4 mmol/L

Median cholesterol = 6.35 mmol/L

Mean and median here are very similar. This is because these data are **symmetrical** about their middle.

Percentile (or centile)
The kth centile is the point below which k% of the data values lie.
The 50th centile is the median.

Measures of spread

- 1. Standard deviation
- 2. Inter-Quartile Range (IQR)

E	Ехатр	ole			
Calculating standard de	eviatio	o <u>n</u> of 5	chole	sterol	values
Cholesterol value	6.2	6.3	6.4	6.5	6.6
Mean value =	6.4 m	mol/L			
Difference from the mean:	-0.2	-0.1	0	+0.1	+0.2
Sum the differences:	0				

6.2	6.3	6.4	6.5	6.6
-0.2	-0.1	0	+0.1	+0.2
0.04	0.01	0	0.01	0.04
0.10				
	6.2 -0.2 0.04 0.10	 6.2 6.3 -0.2 -0.1 0.04 0.01 0.10 	6.26.36.4-0.2-0.100.040.0100.10	6.26.36.46.5-0.2-0.10+0.10.040.0100.010.10

Example: Cholesterol data3.63.83.94.14.24.54.54.85.15.35.45.45.65.85.96.06.16.16.26.36.46.56.66.86.97.17.27.27.37.47.57.78.08.18.18.28.39.09.110.0Lower quartile has 10 data points below it (between the 10 th and 11 th data points) = 5.35Upper quartile has 30 data points below it (between the 30 th and 31 st data points) = 7.45Inter-Quartile Range = 7.45 - 5.35 = 2.1 mmol/L (compares with SD of 1.57 mmol/L).However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information								
3.63.83.94.14.24.54.54.85.15.35.45.45.65.85.96.06.16.16.26.36.46.56.66.86.97.17.27.27.3 7.4 7.5 7.7 8.08.18.18.28.39.09.110.0Lower quartile has 10 data points below it (between the 10 th and 11 th data points) = 5.35 Upper quartile has 30 data points below it (between the 30 th and 31 st data points) = 7.45 Inter-Quartile Range = $7.45 - 5.35 = 2.1$ mmol/L (compares with SD of 1.57 mmol/L).However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information			Exa	mple: (Choles	terol da	ata	
5.1 5.3 5.4 5.4 5.6 5.8 5.9 6.0 6.1 6.1 6.2 6.3 6.4 6.5 6.6 6.8 6.9 7.1 7.2 7.2 7.3 7.4 7.5 7.7 8.0 8.1 8.1 8.2 8.3 9.0 9.1 10.0 Lower quartile has 10 data points below it (between the 10^{th} and 11^{th} data points) = 5.35 Upper quartile has 30 data points below it (between the 30^{th} and 31^{st} data points) = 7.45 Inter-Quartile Range = $7.45 - 5.35 = 2.1$ mmol/L (compares with SD of 1.57 mmol/L)However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	3.6	3.8	3.9	4.1	4.2	4.5	4.5	4.8
6.1 6.1 6.2 6.3 6.4 6.5 6.6 6.8 6.9 7.1 7.2 7.2 7.3 7.4 7.5 7.7 8.0 8.1 8.1 8.2 8.3 9.0 9.1 10.0 Lower quartile has 10 data points below it (between the 10^{th} and 11^{th} data points) = 5.35 Upper quartile has 30 data points below it (between the 30^{th} and 31^{st} data points) = 7.45 Inter-Quartile Range = $7.45 - 5.35 = 2.1$ mmol/L (compares with SD of 1.57 mmol/L)However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	5.1	<u>5.3</u>	5.4	5.4	5.6	5.8	5.9	6.0
6.97.17.27.27.37.47.57.78.08.18.18.28.39.09.110.0Lower quartile has 10 data points below it (between the 10 th and 11 th data points) = 5.35Upper quartile has 30 data points below it (between the 30 th and 31 st data points) = 7.45Inter-Quartile Range = 7.45 - 5.35 = 2.1 mmol/L (compares with SD of 1.57 mmol/L)However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	6.1	6.1	6.2	6.3	6.4	6.5	6.6	6.8
8.08.18.18.28.39.09.110.0Lower quartile has 10 data points below it (between the 10^{th} and 11^{th} data points) = 5.35 Upper quartile has 30 data points below it (between the 30^{th} and 31^{st} data points) = 7.45 Inter-Quartile Range = $7.45 - 5.35 = 2.1 \text{ mmol/L}$ compares with SD of 1.57 mmol/L However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	6.9	7.1	7.2	7.2	7.3	<u>7.4</u>	7.5	7.7
Lower quartile has 10 data points below it (between the 10^{th} and 11^{th} data points) = 5.35 Upper quartile has 30 data points below it (between the 30^{th} and 31^{st} data points) = 7.45 Inter-Quartile Range = $7.45 - 5.35 = 2.1 \text{ mmol/L}$ (compares with SD of 1.57 mmol/L) However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	8.0	8.1	8.1	8.2	8.3	9.0	9.1	10.0
Inter-Quartile Range = 7.45 – 5.35 = 2.1 mmol/L (compares with SD of 1.57 mmol/L) However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	Lower qu points) = Upper qu points) =	iartile has 5.35 iartile has 7.45	s 10 data s 30 data	points be points be	low it (be	etween the	e 10 th an e 30 th and	d 11 th data d 31 st data
However, you can also quote (5.35 to 7.45 mmol/L), as this provides more information	Inter-Qua (compare	artile Ran es with SI	ge = 7.45 D of 1.57	5 – 5.35 = mmol/L)	2.1 mm	ol/L		
	However informati	, you can on	also quo	te (5.35 t	o 7.45 mi	mol/L), as	s this prov	vides more

	Best measure of a 'typical' value, i.e. centre of the data	Best measure of spread
Symmetric data	Mean	Standard deviation
Non-symmetric (skewed) data	Median	Interquartile range (25-75 th centile values)

- Most of the time, we wish to describe the distribution of a particular measurement in the whole population of interest, not just the sample in our study
- E.g. the mean cholesterol level is 6.4 in the 40 men, but can we be sure that this is the mean level in <u>all</u> men aged 45 years?
- What about natural variation?
- What are the implications of conducting a study on a <u>sample</u> of people?

A measure of the precision of the observed mean

Standard error of the mean (SE) = $\frac{s}{\sqrt{n}}$ (s= standard deviation of sample)

Example: sample of 40 cholesterol values

Mean cholesterol = 6.4 mmol/L

SD cholesterol = 1.57 mmol/L

SE (mean) = $\frac{1.57}{\sqrt{40}} = 0.248$

- The standard error gives us an idea of how far our observed mean value (in the sample of 40 men) could be from the true mean
 - As the sample size gets bigger, we should be getting closer to the true mean
 - Therefore, the standard error should get smaller

Lower limit of CI = observed mean - (1.96 x standard error of mean)Upper limit of CI = observed mean + (1.96 x standard error of mean)

Example: 40 cholesterol values for men aged 45

Mean = 6.4 Standard error = 0.248

Lower limit = $6.4 - (1.96 \times 0.248) = 6.4 - 0.486 = 5.914$ Upper limit = $6.4 + (1.96 \times 0.248) = 6.4 + 0.486 = 6.886$ **95% confidence interval is 5.9 to 6.9 mmol/L.**

1.96 is used when there are about 30 or more observations; for smaller samples the multiplier used is larger and will depend on the sample size (the stats package will do this automatically)

Can be easy to confuse

Standard <u>D</u>eviation measures how far the <u>D</u>ata spreads out from the mean value (it just describes how much the measurement varies between people/things)

Standard <u>Error</u> measures the precision of our <u>E</u>stimate (it is used when we are making inferences about the true mean value in a population)