'Counting people' endpoints

- Example of a simple survey in dental undergraduates (cross-sectional survey)
- First look at study design, display of data and interpreting results
- Mainly interested in describing the characteristics of a single group of people

- What is the aim of the study?
- Pick any result, and interpret it.
- Say one thing you liked about the study.
- Say one thing you did not like about the study.
- What does the study contribute to clinical practice?

Study objectives:

• To examine the smoking, alcohol and drug habits of **all** UK dental undergraduates

Outcome measures:

To estimate the **prevalence** of:

- Smoking
- Alcohol
- Recreational drug use

Selecting the sample

- The study was performed in one dental school
- Another way is to take a **random sample** of all dental schools
- For this we need a **sampling frame** (eg a list of all dental students)
- **Simple random sample**: every student has the same chance of being included in the study

• **Prevalence** of a disease (or attribute): the proportion of people with the disease (or attribute) measured at one point in time

• **Incidence rate**: the proportion of people who are **new** cases of the disease (or attribute) within a specified time period

Aim: To obtain the prevalence of smoking, alcohol use and drug use in dental undergraduates in the UK

Advantages of the study:

- All students in the dental school were surveyed; across all 5 years of study
- Anonymous students are less likely to lie about sensitive questions
- Pre-labelled and pre-paid envelopes increases response rate

Aim: To obtain the prevalence of smoking, alcohol use and drug use in dental undergraduates in the UK

Disadvantages of the study:

- Only one dental school out of the 13 in the UK was included
- Assumes that students in this particular school are representative of all UK dental students
- Study done in 1998 and published in 2000; will the results and the conclusions still apply to students enrolling now?

- Look at the simple ways of displaying the data
 - Bar chart (Figure 1)
 - Frequency table (Tables 1 and 2)
- Results section subdivided into well-defined specific sections
- Think of the outcome measures and their definitions, eg
 - Current smoker or not
 - Binge drinker
 - Alcohol: number of units consumed in previous week, or average number of units per week
 - Regular user of drugs

Question

- One endpoint of interest is 'binge drinking'
- How was this defined?

- "Consumes at least half the weekly limit in one session (≥7 units for females and ≥10 units for males)"
- Do you agree with the definition

Binge drinking in students who drink alcohol

All students 1	.72	57
----------------	-----	----

Binge drinking in students who drink alcohol

Gender & year	Ν	% who binge drink*
All males	72	55
All females	100	59
All students	172	57

*Consumes at least half the weekly limit in one session (\geq 7 units for females and \geq 10 units for males)

Binge drinking in students who drink alcohol

Gender & year	Ν	% who binge drink*
Males 1-3	42	45
Males 4-5	30	70
All males	72	55
Females 1-3	64	69
Females 4-5	36	40
All females	100	59
All students	172	57

*Consumes at least half the weekly limit in one session (\geq 7 units for females and \geq 10 units for males)

Cannabis use since becoming an undergraduate

Gender &	Ν	Ever used	Regularly use
year		%	%
Males 1-3	53	55	3.8
Males 4-5	34	74	14.7
All males	87	62	8.0
Females 1-3	73	45	4.1
Females 4-5	38	58	10.5
All females	111	50	6.3
All students	198	55	7.1

What are the implications of conducting the study on a *sample* of people?

55% (109/198) had ever used cannabis.

If the study had included all students in all 13 UK dental schools, would the estimate still be 55%?

(we need to assume that subjects in this one dental school had similar characteristics to all UK students)

What are the implications of conducting the study on a *sample* of people?

55% (109/198) had ever used cannabis.

If the study had included all students in all 13 UK dental schools, would the estimate still be 55%?

(we need to assume that subjects in this one dental school had similar characteristics to all UK students)

95% confidence interval 48% to 62%

Interpreting these results

All dental students in the UK True prevalence= ??

Sample of students in study (198) Observed prevalence=55%

- Based on the data from this one dental school we think the <u>true</u> prevalence is 55%
- However, we cannot be entirely sure of this
- But there is a 95% chance that whatever the true value is, the range 48 and 62% contains it
- [This is not technically accurate, but we use this as an approximate guide to what the true value is (eg a conservative and optimistic estimate)
- The 'true' value is always unknown & a fixed number (so either it is within the given 95% CI or it is not ie there is no *probability* of this).
- 95% CIs technically mean that if we had several studies from the same population, then 95% of such confidence intervals would contain the true value]

20 studies – each based on 198 students

- Because we are using 95% CIs, it means we expect to get the wrong answer 5% of the time (ie 1 in 20)
- It does not necessarily indicate that something was wrong with a particular study
- It could simply mean we were unlucky enough to pick a sample that had different characteristics to most of the others in the population of interest (natural variation)
- Bear this in mind if your results are unexpected

• With n=198 students, the 95% CI for the true prevalence is 48 to 62%

- What do you think happens to this interval if:
- The study was bigger?
- The study was smaller?

Prevalence of cannabis use (%)

- When we conduct a study on a sample of people there will always be some uncertainty of how far our observed estimate is from the true value
- This uncertainty is quantified by the **standard error**
- If the study were based on the whole population (eg all dental students in the UK in 1998) we would have the true prevalence. There would be no uncertainty; the standard error would be 0
- By taking several different samples of the same size, the standard error tells us how much the prevalences, on average, spread about the true prevalence

Standard error of a prevalence is a measure of the uncertainty associated with trying to estimate the **true** prevalence when we only have a sample.

If observed prevalence = p, and sample size = n:

Standard error =
$$\sqrt{\frac{p(1-p)}{n}}$$

Example: a prevalence of 55% based on 198 students: p=0.55, n=198

Standard error =
$$\sqrt{\frac{0.55(1-0.55)}{198}}$$
 = 0.0354

Calculating a confidence interval for the **true** prevalence (or other proportion)

Lower limit = observed prevalence - 1.96 x standard error of prevalence Upper limit = observed prevalence + 1.96 x standard error of prevalence

Example: Prevalence of 55% based on 198 students p=0.55, n=198, standard error = 0.0354

95% Confidence Interval = $0.55 \pm 1.96 \ge 0.0354 = 48$ to 62%

If we want a 95% CI then we use the multiplier "1.96" If we want to be more relaxed (eg 90% CI) the multiplier becomes 1.645 If we want to be more strict (eg 99% CI) the multiplier becomes 2.575

Other considerations

- The response rate was 76% (is this high enough?)
- Could the 24% non-responders have very different characteristics?
- Does drinking and drug use affect exam performance?
- Does drinking and drug habits persist after graduating? What could the follow-on study be?
- Are the main results of this study what you might expect for:
 - (i) dental/medical undergraduates
 - (ii) similarly aged people from the general population?

Possible issues in the dental survey

- Characteristics (eg ethnic group) of the 24% nonresponders differ from the 76% responders
- The smoking, drinking and drug habits of nonresponders differs to responders
- Some people misreport their consumption (eg heavy drug or alcohol users may report lower levels)
- How could any of the above lead to the observed prevalence being over- or under-estimated? (called biases)